Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)
Do đó \(AD=BC\)
b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)
Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC
c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC
Mà AE//BC nên A,D,E thẳng hàng
Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)
Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)
Vậy A là trung điểm DE
a: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE=BC
b: Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AE=FA
a: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE=BC
b: Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AE=FA
tham khảo
mik ko thể vẽ hình đc
SORRY
Giải thích các bước giải:
a.*Xét ΔMBN,ΔMAC có:
MA=MB( vì M là trung điểm BA)
ˆNMB=ˆMC (2 góc đối đỉnh)
MN=MC
⇔ΔMNB=ΔMCA(c.g.c)
⇒ˆMNB=ˆMCA
⇒BN//AC
Vậy BN//AC
b.Từ câu a ⇒AC=BN
Ta có
BN//AC
⇒AC//BE
⇒ˆEAC=ˆAEB
*Xét ΔABE,ΔECA có:
AE chung
ˆAEB=ˆEAC
BE=AC
⇔ ΔABE=ΔECA(c.g.c)
⇒AB=EC
Vậy AB=EC
c.Ta có
AC//BE
⇒ˆACB=ˆCBE
⇒ˆACF=ˆFBE
*Xét ΔACF và ΔBEF có:
FB=FC( F là trung điểm của BC)
ˆACF=ˆEBF
AC=BE
⇔ΔACF=ΔEBF(c.g.c)
⇒ˆAFC=ˆBFE
⇒A,F,E thẳng hàng
Vậy A;F;E thẳng hàng
a) Xét tam giác AME và tam giác BMC, có:
góc AME = góc BMC ( đối đỉnh)
EM = MC ( giải thiết )
AM= MB ( M là trung điểm của AB )
\(\Rightarrow\) TAm giác AME = tam giác BMC ( c-g-c)
\(\Rightarrow\)góc AEM = góc BCM ( hai góc tương ứng)
\(\Rightarrow AE\)//\(BC\) ( đpcm)
Ta có hình vẽ:
a/ Xét tam giác AEM và tam giác CBM có:
AM = MB (GT)
góc AME = góc CMB (đđ)
EM = MC (GT)
=> tam giác AEM = tam giác CBM
=> góc AEM = góc MCB (hai góc t/ư)
Mà hai góc này ở vị trí slt
=> EA // BC (đpcm)
b/ Xét tam giác AFN và tam giác CBN có:
AN = NC (GT)
góc ANF = góc CNB (đđ)
BN = NF (GT)
=> tam giác AFN = tam giác CBN
=> góc AFN = góc NBC (hai góc t/ư)
Mà hai góc này ở vị trí slt
=> AF // BC
Ta có: AE // BC; AF // BC
=> AE trùng AF
=> A;E;F thẳng hàng (1)
Ta có: Tam giác AEM = tam giác CBM (cmt)
=> AE = BC
Ta lại có: tam giác AFN = tam giác CBN (cmt)
=> AF = BC
Ta có: AE = BC; AF = BC
=> AE = AF (t/c bắc cầu) (2)
Từ (1) và (2) => A là trung điểm EF
--> đpcm.
Xét tám giác EMA và tam giác CMB có
góc EMA=góc BMC(đ đ)
EM=MC(gt)
BM=MA(gt)
=> tam giác EMA = tam giac CMB(c.g.c)
=>góc EAM=góc CBA( 2góc tương ứng) và EA=BC(2canh tuong ứng )
Mà 2 góc này ở vị trí so le trong => EA//BC(1)
b) Chứng minh tương tự ta có
tam giác ANF=tam giác CNB(c.g.c)
=> góc FAN=góc BCN(2goc tuong ung) và AF=BC(2 canh tuong ung)
=> AF//BC
Từ (1)(2)=> E,A,F thẳng hàng
Ta có EA=BC(cmt)
AF=BC(cmt)=>EA=AF=> A là trung điểm EF
Bn tự vẽ hình nhá!!
a) Xét tam giác EAM và tam giác CBM có:
MA = MB (gt)
góc EMA = góc BMC ( 2 góc đối đỉnh)
ME = MC (gt)
=> tam giác EAM = tam giác CBM (c-g-c)
=> EA = BC (2 cạnh tương ứng)
góc EAM = góc CBM (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> EA II BC
b) Xét tam giác ADN và tam giác CBN có:
NB = ND (gt)
góc AND = góc BNC (2 góc đối đỉnh)
NA = NC (gt)
=> tam giác ADN = tam giác CBN (c-g-c)
=> DA = BC (2 cạnh tương ứng)
góc ADN = tam giác CBN (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong => DA II BC
c) Ta có: EA = BC (theo a)
DA = BC (theo b)
=> EA = DA => A là trung điểm của DE