Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)
Do đó \(AD=BC\)
b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)
Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC
c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC
Mà AE//BC nên A,D,E thẳng hàng
Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)
Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)
Vậy A là trung điểm DE
a: Xet tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD=BC
b: Xét tứ giác ACBE có
M là trung điểm chung của AB và CE
=>ACBE là hình bình hành
=>AE//BC
a: Xét tứ giác ABCD có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
a: Xét tứ giác ADCB có
N là trung điểm của AC
N là trung điểm của DB
Do đó: ADCB là hình bình hành
Suy ra: DA=BC
a) Xét \(\Delta DNA\) và \(\Delta BCN\), có:
DN = NB (gt)
góc N1 = N2 (2 góc đối đỉnh)
AN = CN (N là TĐ của AC)
->\(\Delta DNA=\Delta BCN\) (c.g.c)
-> AD = BC (2 cạnh tương ứng)
-> góc A1 = góc ACB ( 2 góc tương ứng)
Mà góc A1 và góc ACB là 2 góc SLT
-> AD//BC
Mình chỉ làm được ý a thôi hihi thông cảm
a: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE=BC
b: Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AE=FA
a: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE=BC
b: Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AE=FA
a) Xét tam giác AME và tam giác BMC, có:
góc AME = góc BMC ( đối đỉnh)
EM = MC ( giải thiết )
AM= MB ( M là trung điểm của AB )
\(\Rightarrow\) TAm giác AME = tam giác BMC ( c-g-c)
\(\Rightarrow\)góc AEM = góc BCM ( hai góc tương ứng)
\(\Rightarrow AE\)//\(BC\) ( đpcm)