Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh có cách khác nè :
\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-z\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}\)
\(=\frac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{yz\left(x-y+z-x\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(x-y\right)\left(yz-xy\right)-\left(z-x\right)\left(zx-yz\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{y\left(x-y\right)\left(z-x\right)-z\left(x-y\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-\right)\left(z-x\right)}\)
\(=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{1}{xyz}\)
\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-x\right)\left(y-z\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}\)
\(=\frac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{-y^2z+yz^2-z^2x+zx^2-x^2y+xy^2}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{-y^2\left(z-x\right)-zx\left(z-x\right)+y\left(z^2-x^2\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(z-x\right)\left(yz+xy-y^2-zx\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(z-y\right)\left[y\left(x-y\right)-z\left(x-y\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{1}{xyz}\)
\(S=\frac{yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left(x-z\right)+xy\left(z+1\right)\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
+ \(yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left(x-z\right)+xy\left(z+1\right)\left(x-y\right)\)
\(=yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left[\left(y-z\right)+\left(x-y\right)\right]\)
\(+xy\left(z+1\right)\left(x-y\right)\)
\(=\left(y-z\right)\left[yz\left(x+1\right)-zx\left(y+1\right)\right]+\left(x-y\right)\left[xy\left(z+1\right)-zx\left(y+1\right)\right]\)
\(=\left(y-z\right)\left[z\left(y-x\right)\right]+\left(x-y\right)\cdot x\cdot\left(y-z\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
\(\Rightarrow S=\frac{1}{xyz}\)
Bài giải
\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
\(=\frac{1}{x-y}-\frac{1}{y-z}+\frac{1}{y-z}-\frac{1}{z-x}+\frac{1}{z-x}-\frac{1}{x-y}\)
\(=0\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Suy ra : xy + yz + zx = 0 (nhân cả hai vế với xyz)
Khi đó : \(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)
Chỉ hộ cho tôi tại sao :
\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)với
Đừng có làm bừa chứ Nguyễn Quang Trung
Bạn đã ib nhờ mik thì mik làm cho trót vại UwU
\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-x\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}.\)
\(=-\frac{1}{x\left(x-y\right)\left(z-x\right)}-\frac{1}{y\left(y-z\right)\left(x-y\right)}-\frac{1}{z\left(z-x\right)\left(y-z\right)}\)
\(=-\frac{y^2x-yz^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}-\frac{xz^2-x^2z}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}-\frac{x^2y-xy^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-y^2z+yz^2-xz^2+x^2z-x^2y+xy^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-\left(y^2z-x^2z\right)+\left(yz^2-xz^2\right)-\left(x^2y-xy^2\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-z\left(y^2-x^2\right)+z^2\left(y-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-z\left(y-x\right)\left(x+y\right)+z^2\left(y-x\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{\left(y-x\right)\left[-z\left(x+y\right)+x^2+xy\right]}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{\left(y-x\right)\left[-z\left(x+y\right)+x^2+xy\right]}{-xyz\left(y-x\right)\left(z-x\right)\left(y-z\right)}\)
\(=-\frac{-z\left(x+y\right)+z^2+xy}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=-\frac{-zx-zy+z^2+xy}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-\left(zx-xy\right)-\left(zy-z^2\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-x\left(z-y\right)-z\left(y-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{x\left(y-z\right)-z\left(y-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{\left(y-z\right)\left(x-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{x-z}{xyz\left(z-x\right)}\)
\(=\frac{-\left(z-x\right)}{xyz\left(z-x\right)}\)
\(=\frac{-1}{xyz}\)