Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(11x-7x+6=4x+6=2\left(2x+3\right)\)
2. \(7x^2+xy-2x^2=5x^2+xy=x\left(5x+y\right)\)
3. \(2x^2-x-1=\left(2x+1\right)\left(x-1\right)\)
1.\(x^2-7x+6\)\(=x^2-6x-x+6\)\(=x\left(x-6\right)-\left(x-6\right)\)\(=\left(x-1\right)\left(x-6\right)\)
2.\(y^2+xy-2x^2=y+2xy-xy-2x^2\)\(=y\left(y-x\right)+2x\left(y-x\right)\)\(=\left(y+2x\right)\left(y-x\right)\)
Học tốt !
1. x2 - 7x + 6
= x2 - x - 6x + 6
= x( x - 1 ) - 6( x - 1 )
= ( x - 6 )( x - 1 )
2. y2 + xy - 2x2
= y2 - xy + 2xy - 2x2
= y( y - x ) + 2x( y - x )
= ( y + 2x )( y - x )
a. 2x2-xy
= x(2x-y)
b. x2-xy-x+y
= (x2-xy)-(x+y)
=x(x-y)-(x-y)
=(x-y)(x-1)
Bài 2
\(a,x^3+2x^2+x\)
\(=x.\left(x^2+2x+1\right)\)
\(b,xy+y^2-x-y\)
\(=y.\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right).\left(x+y\right)\)
bài 3
\(a,3x.\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2,x=-2\end{cases}}\)
vậy x=0,x=2 hay x=-2
\(b,xy+y^2-x-y=0\)
\(y.\left(x+y\right)-\left(x+y\right)=0\)
\(\left(y-1\right).\left(x+y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\x+y=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=-1\end{cases}}}\)
vậy x=-1, y=1
a)\(\left(\frac{1}{2}x-1\right)\left(2x-3\right)=x^2-\frac{3}{2}x-2x+3=x^2-\frac{7}{2}x+3\)
b)\(\left(x-7\right)\left(x-5\right)=x^2-5x-7x+5=x^2-12x+5\)
c)\(\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\left(4x-1\right)=\left(x^2-\frac{1}{4}\right)\left(4x-1\right)=4x^3-x^2-x+\frac{1}{4}\)
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
a) Ta có: \(g\left(x\right)=x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
Vì \(f\left(x\right)⋮g\left(x\right)\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)q\left(x\right)\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-1\right)\left(1-2\right)q\left(1\right)=0\left(1\right)\\f\left(2\right)=\left(1-2\right)\left(2-2\right)q\left(2\right)=0\left(2\right)\end{cases}}\)
Từ \(\left(1\right)\Leftrightarrow1^4-3.1^3+1^2+a+b=0\)
\(\Leftrightarrow-1+a+b=0\)
\(\Leftrightarrow a+b=1\left(3\right)\)
Từ \(\left(2\right)\Leftrightarrow2^4-3.2^3+2^2+2a+b=0\)
\(\Leftrightarrow-4+2a+b=0\)
\(\Leftrightarrow2a+b=4\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=-2\end{cases}}}\)
Vậy a=3 và b=-2 để \(f\left(x\right)⋮g\left(x\right)\)
Các phần sau tương tự
a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2
1)
a) \(-7x\left(3x-2\right)\)
\(=-21x^2+14x\)
b) \(87^2+26.87+13^2\)
\(=87^2+2.87.13+13^2\)
\(=\left(87+13\right)^2\)
\(=100^2\)
\(=10000\)
2)
a) \(x^2-25\)
\(=x^2-5^2\)
\(=\left(x-5\right)\left(x+5\right)\)
b) \(3x\left(x+5\right)-2x-10=0\)
\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)
\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..........
3)
a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)
Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)
b)
Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)
x3 -2x2 +x- xy2
= x ( x2 - 2x + 1 - y2)
= x\(\left[\left(x-1\right)^2-y^2\right]\)
= x ( x- 1- y) ( x - 1 + y )
X3-2x2+x-xy2
=(x3+x)-(2x2-xy2)
=x(x2+1)-x(2x-y2)
=x(x2-2x+1-y2)
=x[(x-1)2-y]
=x(x-1-y)(x-1+y)
Chúc bạn làm tốt@"
( 1 2 xy – 1).(x3 – 2x – 6) = 1 2 xy.(x3 – 2x – 6) + (-1).(x3 – 2x – 6)
= 1 2 xy.x3 + 1 2 xy.(-2x) + 1 2 xy.(-6) + (-1).x3 + (-1).(-2x) + (-1).(-6)
= 1 2 x(1 + 3)y - x(1 + 1)y - 3xy - x3 + 2x + 6
= 1 2 x4y-x2 y - 3xy - x3 + 2x + 6
= 1 2 x4y - x3 - x2y - 3xy + 2x + 6