Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-x^2-14x+24\)
\(=x^3-2x^2+x^2-2x-12x+24\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)
\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
\(x^4+x^3+2x-4\)
\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)
\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)
\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)
\(8x^4-2x^3-3x^2-2x-1\)
\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)
\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)
\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)
\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)
\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)
\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)
\(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
Chúc bạn học tốt.
mk ghi đáp án, còn lại bạn tự biến đổi
a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)
mk làm chi tiết theo yêu của của người hỏi đề:
a) \(2x^3-x^2+5x+3\)
\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4\)
\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)
\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
1 ) \(x^6-x^4+2x^3+2x^2\)
= x2 ( x4 - x2 + 2x + 2 )
= \(x^2\left[x^4+2x^3+x^2-2x^3-4x^2-2x+2x^2+4x+2\right]\)
= \(x^2\left[x^2\left(x^2+2x+1\right)-2x\left(x^2+2x+1\right)+2\left(x^2+2x+1\right)\right]\)
= \(x^2\left(x^2+2x+1\right)\left(x^2-2x+2\right)\)
= \(x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)
\(e,x^6-x^4+2x^3+2x^2\)
\(=x^4\left(x^2-1\right)+2x^2\left(x+1\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)
\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2x^2\right]\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2x^2\right)\)
\(=x^2\left(x+1\right)\left(x^3+x^2\right)\)
\(=x^4\left(x+1\right)^2\)
\(f,x^2-7x+12\)
\(=x^2-3x-4x+12\)
\(=x\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-4\right)\left(x-3\right)\)
a. \(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x-3\right)\left(x+1\right)\)
b. \(x^2-4xy+3y^2=x^2-xy-3xy+3y^2=x\left(x-y\right)-3y\left(x-y\right)=\left(x-3y\right)\left(x-y\right)\)
c. \(x^2-5x-24=\left(x-8\right)\left(x+3\right)\)
e. \(2x^4+7x^2+3\)
\(=2x^4+x^2+6x^2+3\)
\(=x^2\left(2x^2+1\right)+3\left(2x^2+1\right)\)
\(=\left(x^2+3\right)\left(2x^2+1\right)\)
c, \(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2[x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)]\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
\(=x^2\left(x+1\right)[x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)]\)
\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)
d,
\(2x^3-x^2-1\)
\(=2x^3-2x^2+x^2-x+x-1\)
\(=2x^2\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(2x^2+x+1\right)\)
a, x3 - 19x - 30
= x3 - 5x2 + 5x2 - 25x + 6x + 30
= (x2 + 5x + 6)(x - 5)
= (x + 3)(x + 2)(x - 5)
d, x4 - 2x2 - 24
= x4 - 6x2 + 6x2 - 24
= (x2 - 6)(x + 4)