K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

Ta có

\(A=3x^4+11x^3-7x^2-2x+1\)có tận cùng là 1

\(1=1\cdot1=-1\cdot\left(-1\right)\)

\(\Rightarrow3x^4+11x^3-7x^2-2x+1=\left(ax+1\right)\left(bx^3+cx^2+dx+1\right)\)

Vì \(3=1\cdot3=\left(-1\right)\cdot\left(-3\right)\)

=> Ta thấy A=1 hoặc A=-1 là không thể

=> A=-3 hoặc A=3

Đặt phép tính cho từng trường hợp ta được

\(3x^4+11x^3-7x^2-2x+1=\left(-3x+1\right)\left(-x^3-4x^2+x+1\right)\)

4 tháng 9 2018

đi rồi bày cho

4 tháng 9 2018

\(C=x^4-x^3+2x^2-11x-5\)

   \(=x^4+x^3+5x^2-2x^3-2x^2-10x-x^2-x-5\)

   \(=x^2\left(x^2+x+5\right)-2x\left(x^2+x+5\right)-\left(x^2+x+5\right)\)

   \(=\left(x^2+x+5\right)\left(x^2-2x-1\right)\)

Bài này phải dùng phương pháp hệ số bất định (bài này khó)

C có dạng \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)

Đồng nhất với đa thức C thì phải giải 4 cái sau:

\(a+c=-1\left(1\right),ac+b+d=2\left(2\right),ad+bc=-11\left(3\right),bd=-5\left(4\right)\)

Giải (4) trước (vì \(b,d\in Z\)

Rồi thay vào thử tìm a,c (hơi lâu vì bài này trong 4 ước chỉ tìm được duy nhất 1 giá trị của b và d)

Lời giải thích trên hơi khó hiểu đúng ko? Chúc bạn học tốt.

4 tháng 9 2018

đi rồi bày cho

14 tháng 4 2018

bài này dùng pp hệ số bất định 

p.trình trên ko có nghiệm nguyên nên sẽ có dạng (x^2+ax+b)(x^2+cx+d).

Phá ngoặc ta đc x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd.

Kết hợp vs đề bài ta có hệ đ/k sau: a+c = -1;ac+b+d = 2;ad+bc = -11;bd= -5. (1)

Xét vs b = -1;d=5 thì (1) trở thành : a+c =-1;                                                  (2)

                                                   ac= -2;

                                                   5a-c = -11                                                (3)

Từ (2) và (3) ta có 6a = -12 =>a = -2

                                       =>c = 1

=> a = -2; b = -1; c = 1; d = 5

Vậy đa thức trên khi phân tích thành nhân tử sẽ bằng (x^2 - 2x - 1)(x^2 + x + 5).

Vậy nha.

14 tháng 4 2018

Mình chịu thôi với lại mình mới học lớp 5

31 tháng 12 2016

BÀI 1:

Tìm số tự nhiên n sao cho \(19+3^n\)là số chính phương

BÀI 2:

cho a,b,c là các số thực thỏa mãn: \(1\le a\)\(b,c\le3\)và \(a+b+c=6\)

Tìm GTLN: \(M=a^2+b^2+c^2\)

1 tháng 1 2017

(Lớp 8 mà học đa thức bất khả quy rồi sao???)

Em tìm hiểu sơ về 2 khái niệm sau đây trên mạng: "đa thức bất khả quy" và "tiêu chuẩn Eisenstein".

1. Đa thức hệ số nguyên gọi là bất khả quy nếu không phân tích được thành 2 nhân tử bậc nhỏ hơn với hệ số nguyên (bậc của chúng >=1).

2. Tiêu chuẩn Eisenstein: Nếu tồn tại \(p\) nguyên tố thoả mãn:

  • Hệ số cao nhất không chia hết cho \(p\).
  • Mọi hệ số khác đều chia hết cho \(p\).
  • Riêng hệ số tự do không chia hết cho \(p^2\).

Thì đa thức này bất khả quy.

-----

Nếu em đã hiểu được 2 khái niệm trên thì lời giải như sau:

Xét số nguyên tố \(3\). Nhận thấy theo tiêu chuẩn Eisenstein thì đa thức \(Q\left(x\right)\) bất khả quy. Xong!