Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int\left(3x^2-2x-4\right)dx=x^3-x^2-4x+C\)
\(\int\left(sin3x-cos4x\right)dx=-\dfrac{1}{3}cos3x-\dfrac{1}{4}sin4x+C\)
\(\int\left(e^{-3x}-4^x\right)dx=-\dfrac{1}{3}e^{-3x}-\dfrac{4^x}{ln4}+C\)
d. \(I=\int lnxdx\)
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x\end{matrix}\right.\)
\(\Rightarrow u=x.lnx-\int dx=x.lnx-x+C\)
e. Đặt \(\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=x.e^x-\int e^xdx=x.e^x-e^x+C\)
f.
Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)
\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)
g.
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{2}x^2.lnx-\dfrac{1}{2}\int xdx=\dfrac{1}{2}x^2.lnx-\dfrac{1}{4}x^2+C\)
a/ \(\int\dfrac{x^2-3x+1}{x}dx=\int\left(x-3+\dfrac{1}{x}\right)dx=\int x.dx-3x+\int\dfrac{dx}{x}=\dfrac{1}{2}.x^2-3x+ln\left|x\right|+C\)
b/ \(I=\int x.e^{2x}dx\)
\(\left\{{}\begin{matrix}u=x\\dv=e^{2x}dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{1}{2}e^{2x}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{2}.x.e^{2x}-\dfrac{1}{2}\int e^{2x}.dx=\dfrac{1}{2}x.e^{2x}-\dfrac{1}{4}e^{2x}\)
\(\int\dfrac{xe^x}{\left(x+1\right)^2}dx\)
\(=\int e^x.\dfrac{\left(x+1\right)-1}{\left(x+1\right)^2}dx=\int e^x.[\dfrac{1}{x+1}-\dfrac{1}{\left(x+1\right)^2}]dx\)
\(=\int\dfrac{e^x}{x+1}dx-\int\dfrac{e^x}{\left(x+1\right)^2}dx=\dfrac{1}{x+1}e^x+\int\dfrac{e^x}{\left(x+1\right)^2}dx-\int\dfrac{e^x}{\left(x+1\right)^2}dx\)
\(=\dfrac{e^x}{x+1}+C\)
Ko chac :v
\(I=\int\dfrac{x.e^x}{\left(x+1\right)^2}dx\)
Đặt \(\left\{{}\begin{matrix}u=xe^x\\dv=\dfrac{1}{\left(x+1\right)^2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=e^x\left(x+1\right)dx\\v=-\dfrac{1}{x+1}\end{matrix}\right.\)
\(I=\dfrac{-xe^x}{x+1}+\int e^xdx=\dfrac{-xe^x}{x+1}+e^x+C=\dfrac{e^x}{x+1}+C\)