Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích hình chữ nhật CDKL
CD = AB = 108 cm
SCDKL = CD.CL = 108.78 = 8424 ( c m 2 )
Hình lăng trụ đứng ADKHE.BCLGF có thể chia thành hai hình.
Một hình hộp chữ nhật có hai cạnh đáy là 13cm và 54cm ,chiều cao hình hộp 108cm, một hình lăng trụ đứng đáy hình thang vuông với hai cạnh đáy 24cm và 54cm, chiều cao đáy 72cm chiều cao lăng trụ 108cm
Thể tích phần hình hộp chữ nhật là :
V = 18.54.108 = 104976 ( c m 3 )
Thể tích phần hình lăng trụ đứng là:
V = S.h = 2808.108 = 303264 ( c m 3 )
Thể tích lăng trụ đứng ADKHE.BCLGF bằng:
V = 104976 +303264 = 408240 ( c m 3 )
a)Ta có E là trung điểm của CM (gt)
F là trung điểm của CB (gt)
\(\Rightarrow\) EF là đường trung bình của (định nghĩa đường trung bình của tam giác)
\(\Rightarrow\) EF//MB (tính chất đường trung bình của tam giác)
hay EF//AB
lại có K là trung điểm của AD (gt)
F là trung điểm của CB (gt)
\(\Rightarrow\) KF là đường trung bình của (...)
\(\Rightarrow\) KF//AM (t/c ...)
hay KF//AB
nên EF//KF (vì cùng // với AB)
\(\Rightarrow\) tứ giác EFFIK là hình thang (Định nghĩa hình thang)
Gọi N là trung điểm của AM, nối KM
Ta có N là trung điểm của AM (cách dựng)
K là trung điểm của AD (gt)
\(\Rightarrow\) NK là đường trung bình của
nên NK//DM (t/c....)
mà EN là đường trung bình của (E,I là trung điểm của MC,AM)
\(\Rightarrow\) EI//AC (t/c...)
lại có và là những tam giác đều (gt)
\(\Rightarrow\)
\(\Rightarrow\) AC//DM
tức là NK//EN (cùng //AC//DM)
do đó 3 điểm E,K,N thẳng hàng (theo tiên đề Ơ-clit)
(2góc đồng vị của AC//EN)
(2 góc đồng vị của KF//AM)
nên
C/m tương tự, lấy P là trung điểm của BM ta cũng được
Hình thang EFIK có
Vậy EFIK là hình thang cân (dấu hiệu nhận biết)
b) Ta có EFIK là hình thang cân (kq câu a)
\Rightarrow EI=KF (tính chất 2 đường chéo trong hình thang cân)
E là trung điểm của CM, I là trung điểm của DM (gt)
\(\Rightarrow\) EI là đường trung bình của tam giác CMD
\(\Rightarrow\) EI=
Vậy KF=
a) Trong tam giác ADC, ta có:
E là trung điểm của AD (gt)
I là trung điểm của AC (gt)
Nên EI là đường trung bình của ∆ ABC
⇒ EI // CD (tính chất đường trung bình của tam giác)
Trong tam giác ABC ta có:
I là trung điểm của AC
F là trung điểm của BC
Nên IF là đường trung bình của ∆ ABC
⇒ IF // AB (tính chất đường trung bình của tam giác)
b) Câu b đou
Hình BCLGF có thể chia thành hai hình Một hình chữ nhật có kích thước 18cm và 54cm, một hình thang vuông có: 2 đáy là 24cm và 54cm, chiều cao 72cm
Diện tích phần hình chữ nhật là: S = 18.54= 972( c m 2 )
Diện tích phần hình thang vuông
S = [(24 + 54) : 2].72 = 2808 ( c m 2 )
Diện tích hình BCLGF bằng: 972 + 2808 = 3780 ( c m 2 )