Bài 2.Cho tứ giác...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2021

a) Trong tam giác ADC, ta có:

E là trung điểm của AD (gt)

I là trung điểm của AC (gt)

Nên EI là đường trung bình của ∆ ABC

⇒ EI // CD (tính chất đường trung bình của tam giác)

Trong tam giác ABC ta có:

I là trung điểm của AC

F là trung điểm của BC

Nên IF là đường trung bình của ∆ ABC

⇒ IF // AB (tính chất đường trung bình của tam giác)

b) Câu b đou

5 tháng 8 2021

em nào địt với anh ko

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

a) Vì tam giác ABC vuông tại A 

=> BAC = 90 độ

=> Vì K là hình chiếu của H trên AB 

=> HK vuông góc với AB

=> HKA = 90 độ

=> HKA = BAC = 90 độ

=> KH // AI 

=> KHIA là hình thang

Mà I là hình chiếu của H trên AC

=> HIA = 90 độ

=> HIA = BAC = 90 độ

=> KHIA là hình thang cân

b) Vì KHIA là hình thang cân

=> KA = HI 

=  >KI = HA 

Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có

KA = HI

KI = AH 

=> Tam giác KAI = tam giác HIC ( cgv-ch)

=> KIA = ACB ( DPCM)

c) con ý này tớ nội dung chưa học đến  thông cảm

E, F là trung điểm của AD và BC (đề bài) => EF là đường trung bình của ht ABCD => EF//AB//CD

+ Xét tg ABD có

E là trung điểm AD (đề bài)

EI//AB

=> EI là đường trung bình của tg ABD => EI=AB/2 (1)

+ Xét tg ABC chứng minh tương tự cũng có KF=AB/2 (2)

Từ (1) và (2) => EI=KF 

+ Xét tg BCD chứng minh tương tự có IF=(IK+KF)=CD/2

⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.

b/ Câu b dựa vào KQ của câu a

10 tháng 10 2021

+ ΔABD có DE = EA và DK = KB

⇒ EK là đường trung bình của ΔDAB

⇒ EK // AB

 
 

+ Hình thang ABCD có: AE = ED và BF = FC

⇒ EF là đường trung bình của hình thang ABCD

⇒ EF // AB// CD

+ Qua điểm E ta có EK // AB và EF // AB nên theo tiên đề Ơclit ta có E, K, F thẳng hàng.

6 tháng 9 2021

Câu 1:

undefined

* Hình thang ABCD có AB // CD

E là trung điểm của AD (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của hình thang ABCD

EF // CD (tỉnh chất đưòng trung bình hình thang) (1)

* Trong ΔADC ta có: 

E là trung điểm của AD (gt)

I là trung điểm của AC (gt) 

Nên EI là đường trung bình của ΔADC

⇒ EI // CD (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) và theo tiên đề ƠClít ta có đường thẳng EF và EI trùng nhau. Vậy E, F, I thẳng hàng

Câu 2:

undefined

Gọi E là trung điểm của DC

Trong ΔBDC, ta có:

M là trung điểm của BC (gt)

E là trung điểm của CD (gt)

Nên ME là đường trung bình của ∆BCD

⇒ME // BD (tính chất đường trung bình tam giác)

Suy ra: DI // ME

AD = 1/2 DC (gt)

DE = 1/2 DC (cách vẽ)

⇒ AD = DE và DI//ME

Nên AI= IM (tính chất đường trung bình của tam giác).

10 tháng 10 2021

https://zalo.me/g/coihxr059

link tham gia nhóm

E, F là trung điểm của AD và BC (đề bài) => EF là đường trung bình của ht ABCD => EF//AB//CD

+ Xét tg ABD có

E là trung điểm AD (đề bài)

EI//AB

=> EI là đường trung bình của tg ABD => EI=AB/2 (1)

+ Xét tg ABC chứng minh tương tự cũng có KF=AB/2 (2)

Từ (1) và (2) => EI=KF 

+ Xét tg BCD chứng minh tương tự có IF=(IK+KF)=CD/2

⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.

b/ Câu b dựa vào KQ của câu a

EF//AB//CD

+ Xét tg ABD có

E là trung điểm AD (đề bài)

EI//AB

=> EI là đường trung bình của tg ABD => EI=AB/2 (1)

+ Xét tg ABC chứng minh tương tự cũng có KF=AB/2 (2)

Từ (1) và (2) => EI=KF 

+ Xét tg BCD chứng minh tương tự có IF=(IK+KF)=CD/2

⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.

b/ Câu b dựa vào KQ của câu a

10 tháng 10 2021

E, F là trung điểm của AD và BC (đề bài) => EF là đường trung bình của ht ABCD => EF//AB//CD

+ Xét tg ABD có

E là trung điểm AD (đề bài)

EI//AB

=> EI là đường trung bình của tg ABD => EI=AB/2 (1)

+ Xét tg ABC chứng minh tương tự cũng có KF=AB/2 (2)

Từ (1) và (2) => EI=KF 

+ Xét tg BCD chứng minh tương tự có IF=(IK+KF)=CD/2

IFEI=IK+KFEI=IK=CD2AB2=CDAB2.⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.

b/ Câu b dựa vào KQ của câu a

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN