Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm
E, F là trung điểm của AD và BC (đề bài) => EF là đường trung bình của ht ABCD => EF//AB//CD
+ Xét tg ABD có
E là trung điểm AD (đề bài)
EI//AB
=> EI là đường trung bình của tg ABD => EI=AB/2 (1)
+ Xét tg ABC chứng minh tương tự cũng có KF=AB/2 (2)
Từ (1) và (2) => EI=KF
+ Xét tg BCD chứng minh tương tự có IF=(IK+KF)=CD/2
⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.
b/ Câu b dựa vào KQ của câu a
+ ΔABD có DE = EA và DK = KB
⇒ EK là đường trung bình của ΔDAB
⇒ EK // AB
+ Hình thang ABCD có: AE = ED và BF = FC
⇒ EF là đường trung bình của hình thang ABCD
⇒ EF // AB// CD
+ Qua điểm E ta có EK // AB và EF // AB nên theo tiên đề Ơclit ta có E, K, F thẳng hàng.
Câu 1:
* Hình thang ABCD có AB // CD
E là trung điểm của AD (gt)
F là trung điểm của BC (gt)
Nên EF là đường trung bình của hình thang ABCD
EF // CD (tỉnh chất đưòng trung bình hình thang) (1)
* Trong ΔADC ta có:
E là trung điểm của AD (gt)
I là trung điểm của AC (gt)
Nên EI là đường trung bình của ΔADC
⇒ EI // CD (tính chất đường trung bình tam giác) (2)
Từ (1) và (2) và theo tiên đề ƠClít ta có đường thẳng EF và EI trùng nhau. Vậy E, F, I thẳng hàng
Câu 2:
Gọi E là trung điểm của DC
Trong ΔBDC, ta có:
M là trung điểm của BC (gt)
E là trung điểm của CD (gt)
Nên ME là đường trung bình của ∆BCD
⇒ME // BD (tính chất đường trung bình tam giác)
Suy ra: DI // ME
AD = 1/2 DC (gt)
DE = 1/2 DC (cách vẽ)
⇒ AD = DE và DI//ME
Nên AI= IM (tính chất đường trung bình của tam giác).
E, F là trung điểm của AD và BC (đề bài) => EF là đường trung bình của ht ABCD => EF//AB//CD
+ Xét tg ABD có
E là trung điểm AD (đề bài)
EI//AB
=> EI là đường trung bình của tg ABD => EI=AB/2 (1)
+ Xét tg ABC chứng minh tương tự cũng có KF=AB/2 (2)
Từ (1) và (2) => EI=KF
+ Xét tg BCD chứng minh tương tự có IF=(IK+KF)=CD/2
⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.
b/ Câu b dựa vào KQ của câu a
EF//AB//CD
+ Xét tg ABD có
E là trung điểm AD (đề bài)
EI//AB
=> EI là đường trung bình của tg ABD => EI=AB/2 (1)
+ Xét tg ABC chứng minh tương tự cũng có KF=AB/2 (2)
Từ (1) và (2) => EI=KF
+ Xét tg BCD chứng minh tương tự có IF=(IK+KF)=CD/2
⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.
b/ Câu b dựa vào KQ của câu a
E, F là trung điểm của AD và BC (đề bài) => EF là đường trung bình của ht ABCD => EF//AB//CD
+ Xét tg ABD có
E là trung điểm AD (đề bài)
EI//AB
=> EI là đường trung bình của tg ABD => EI=AB/2 (1)
+ Xét tg ABC chứng minh tương tự cũng có KF=AB/2 (2)
Từ (1) và (2) => EI=KF
+ Xét tg BCD chứng minh tương tự có IF=(IK+KF)=CD/2
⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.⇒IF−EI=IK+KF−EI=IK=CD2−AB2=CD−AB2.
b/ Câu b dựa vào KQ của câu a
A B C D M N E
a, xét tứ giác AMDN có :
góc BAC = góc DMA = góc AND = 90 (gt)
=> AMDN là hình chữ nhật (dấu hiệu)
b, AMDN là hình chữ nhật (câu a)
=> AN // DM hay AN // ME (1)
AMDN là hình chữ nhật => AN = MD (tc)
MD = ME do E đối xứng cới D qua M (gt)
=> AN = ME và (1)
=> AEMN là hình bình hành (dấu hiệu)
=> AN // ME (đn)
c, AMDN là hình chữ nhật (câu a)
để AMDN là hình vuông
<=> DN = DM (dh) (2)
có D là trung điểm của BC (gt)
DN // AB do AMDN là hình chữ nhật
=> DN là đường trung bình của tam giác ABC
=> DN = AB/2 (tc)
tương tự có DM = AC/2 và (2)
<=> AB/2 = AC/2
<=> AB = AC
tam giác ABC vuông tại A gt)
<=> tam giác ABC vuông cân tại A
vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông
+ vì AMDN là hình vuông
=> MN _|_ AD (tc)
=> S AMDN = NM.AD : 2 (Đl)
tam giác ABC vuông tại A có AD _|_ BC
=> S ABC = AD.BC : 2 (đl) (3)
BC = 2NM do NM là đường trung bình của tam giác ABC và (3)
=> S ABC = AD.2MN : 2
=> S ABC = 2S AMDN
a) Trong tam giác ADC, ta có:
E là trung điểm của AD (gt)
I là trung điểm của AC (gt)
Nên EI là đường trung bình của ∆ ABC
⇒ EI // CD (tính chất đường trung bình của tam giác)
Trong tam giác ABC ta có:
I là trung điểm của AC
F là trung điểm của BC
Nên IF là đường trung bình của ∆ ABC
⇒ IF // AB (tính chất đường trung bình của tam giác)
b) Câu b đou
em nào địt với anh ko