K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Diện tích khu đất hình vuông có trồng chè và cà phê là:

     3x3=9(km2)

Diện tích trồng chè là:

    9:(2+1)x1=3(km2)

Diện tích trồng cà phê là:

      9 - 3 = 6 (km2)

           Đáp số: 3 (km2)

7 tháng 5 2016

diện tích khu đất hunhf chữ nhật là:

              3.3=9(km2)

diện tích trồng chè là:

            9:(2+1)=3(km2

diện tích trồng cà phê là:

          9-3=6(km2)

                  Đáp số: diện tích trồng chè là 3km2

                                 diện tích trồng cà phê là 6km2     

8 tháng 9 2018

Gọi x là diện tích trồng đậu, y là diện tích trồng cà, (đơn vị a = 100 m 2 ), điều kiện x ≥ 0, y ≥ 0, ta có x + y ≤ 0

    Số công cần dùng là 20x + 30y ≤ 180 hay 20 + 3y ≤ 18

    Số tiền thu được là

    F = 3000000x + 4000000y (đồng)

    Hay F = 3x + 4y (đồng)

    Ta cần tìm x, y thỏa mãn hệ bất phương trình

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Sao cho F = 3x + 4y đạt giá trị lớn nhất.

    Biểu diễn tập nghiệm của (H) ta được miền tứ giác OABC với A(0;6), B(6;2), C(8;0) và O(0;0).

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Xét giá trị của F tại các đỉnh O, A, B, C và so sánh ta suy ra x = 6, y = 2 (tọa độ điểm B) là diện tích cần trồng mỗi loại để thu được nhiều tiền nhất là F = 26 (triệu đồng).

    Đáp số: Trồng 6a đậu, 2a cà, thu hoạch 26 000 000 đồng.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Để quy hoạch x sào đất trồng cà tím, cần \(200\,000.x\)(đồng)

Để quy hoạch y sào đất trồng cà chua, cần \(100\,000.y\)(đồng)

Tổng số tiền để mua hạt giống là \(200{\rm{ }}000.x + 100{\rm{ }}000.y\) (đồng), tối đa là 9 triệu đồng nên ta có bất phương trình: \(0,2x + 0,1y \le 9\)

Ngoài ra số sào đất là số không âm nên \(x \ge 0\) và \(y \ge 0\)

b) + Cặp số (20; 40) thỏa mãn cả 3 bất phương trình trên vì \(0,2.20 + 0,1.40 = 8 < 9\).

+ Cặp số (40; 20) không thỏa mãn các bất phương trình trên vì \(0,2.40 + 0,1.20 = 10 > 9\).

+ Cặp số (-30; 10) không thỏa mãn các bất phương trình trên vì \( - 30 < 0\).

14 tháng 10 2017

lớp 6 nha !

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Gọi chiều dài mảnh vườn là a(m)

Khi đó ta có \(2a + 2x = 40 \Leftrightarrow a = 20 - x\)

Vậy diện tích mảnh vườn hình chữ nhật là: \(S = a.x = (20 - x)x =  - {x^2} + 20x\)

b) Để diện tích mảnh vườn lớn nhất thì S phải lớn nhất:

Ta có \(S =  - {x^2} + 20x =  - ({x^2} - 20x + 100) + 100 = 100 - {(x - 10)^2} \le 100\)(vì \({(x - 10)^2} \ge 0\))

Diện tích mảnh vườn lớn nhất là 100 \(\left( {{m^2}} \right)\) khi x = 10

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Gọi x là chiều rộng của vườn hoa (\(x > 0\), tính bằng đơn vị mét)

Theo giả thiết ta có chiều dài là \(15 - x\)

Diện tích của vườn hoa có phương trình như sau \(f\left( x \right) = x\left( {15 - x} \right) =  - {x^2} + 15x\)

Ta có bất phương trình thỏa mãn bài toán như sau:\( - {x^2} + 15x \ge 50 \Leftrightarrow  - {x^2} + 15x - 50 \ge 0\)

Xét tam thức \(g\left( x \right) =  - {x^2} + 15x - 50\) có hai nghiệm phân biệt là \({x_1} = 5;{x_2} = 10\) và \(a =  - 1 < 0\) nên \(g\left( x \right) > 0\) khi x thuộc đoạn  \(\left[ {5;10} \right]\)

Vậy khi chiều rộng nằm trong đoạn \(\left[ {5;10} \right]\) mét thì diện tích vườn hoa ít nhất là 50 \({m^2}\).