Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt
\(m_1=700g=0,7kg\)
\(t_1=105^0C\)
\(m_2=2,8kg\)
\(t=33^0C\)
\(\Rightarrow\Delta t_1=t_1-t=105-33=72^0C\)
\(c_1=460J/kg.K\)
\(c_2=4200J/kg.K\)
_______________
\(\Delta t_2=?^0C\)
Giải
Theo phương trình cân bằng nhiệt ta có:
\(Q_1=Q_2\\ \Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\\ \Leftrightarrow0,7.460.72=2,8.4200.\Delta t_2\Leftrightarrow\Delta t_2=1,97^0C\)
Tóm tắt:
\(m_1=700g=0,7kg\)
\(t_1=105^oC\)
\(m_2=2,8kg\)
\(t=33^oC\)
\(\Rightarrow\Delta t_1=t_1-t=72^oC\)
\(c_1=460J/kg.K\)
\(c_2=4200J/kg.K\)
==========
\(\Delta t_2=?^oC\)
Nhiệt độ nước nóng lên:
\(Q_1=Q_2\)
\(\Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\)
\(\Leftrightarrow\Delta t_2=\dfrac{m_1.c_1.\Delta t_1}{m_2.c_2}\)
\(\Leftrightarrow\Delta t_2=\dfrac{0,7.460.72}{2,8.4200}\)
\(\Leftrightarrow\Delta t_2\approx2^oC\)
Nhiệt độ của nước sau khi tăng lên:
\(\Delta t=t-t_2\Leftrightarrow t_2=\Delta t-t=2+33=35^oC\)
Nhiệt lượng đồng toả ra
\(Q_{toả}=5.380\left(100-30\right)=133000J\)
Ta có phương trình cân bằng nhiệt
\(Q_{thu}=Q_{toả}=133000J\)
Nước nóng thêm số độ là
\(\Delta t^o=\dfrac{Q_{thu}}{m_1c_1}=\dfrac{133000}{3,5.42002}=9^o\)
Tóm tắt:
\(m_1=600g=0,6kg\)
\(m_2=2,1kg\)
\(t=380^oC\)
\(t_1=5700^oC\)
\(\Rightarrow\Delta t_1=t_1-t=5700-380=5320^oC\)
\(c_1=380J/kg.K\)
\(c_2=4200J/kg.K\)
===========
\(\Delta t_2=?^oC\)
Vì nhiệt lượng của đồng tỏa ra bằng với nhiệt lượng của nước thu vào:
Theo phương trình cân bằng nhiệt ta có:
\(Q_1=Q_2\)
\(\Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\)
\(\Leftrightarrow0,6.380.5320=2,1.4200.\Delta t_2\)
\(\Leftrightarrow1212960=8820\Delta t_2\)
\(\Leftrightarrow\Delta t_2=\dfrac{1212960}{8820}\approx138^oC\)
Gọi nhiệt độ nước ban đầu là \(t_2^oC\).
Nhiệt lượng miếng đồng tỏa ra:
\(Q_{toả}=m_1c_1\left(t_1-t\right)=0,6\cdot380\cdot\left(100-30\right)=15960J\)
Nhiệt lượng nước thu vào:
\(Q_{thu}=m_2c_2\left(t-t_2\right)=2,5\cdot4200\cdot\left(30-t_2\right)J\)
Cân bằng nhiệt: \(Q_{tỏa}=Q_{thu}\)
\(\Rightarrow15960=2,5\cdot4200\cdot\left(30-t_2\right)\Rightarrow t_2=28,48^oC\)
Nước nóng thêm \(\Delta t_2=30-28,48=1,52^oC\)
Nhiệt lượng đồng tỏa ra là:
Q1 = m1.c1.(t1 – t) = 380.0,6.(100 – 30)
Nhiệt lượng nước thu vào là:
Q2 = m2.c2.(t – t2) = 2,5.4200.(t – t2)
Vì nhiệt lượng tỏa ra bằng nhiệt lượng thu vào nên:
Qthu = Qtỏa ↔ Q2 = Q1
↔ 380.0,6.(100 – 30) = 2,5.4200.(t – t2)
Suy ra Δt = t – t2 = 1, 52oC
Tóm tắt
\(m_1=500g=0,5kg\\ t_1=100^0C\\ m_2=3kg\\ t=35^0C\\ \Rightarrow\Delta t_1=t_1-t=100-35=65^0C\\ c_1=380J/kg.K\\ c_2=4200J/kg.K\)
________________
\(\Delta t_2=?^0C\)
Giải
Nhiệt độ nước nóng thêm là:
Theo phương trình cân bằng nhiệt ta có:
\(Q_1=Q_2\\ \Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\\\Leftrightarrow0,5.380.65=3.4200. \Delta t_2\\ \Leftrightarrow12350=12600\Delta t_2\\ \Delta t_2=1^0C\)
Tóm tắt: Giải
m1= 500g=0,5kg Nhiệt lượng miếng đồng toả ra là:
m2= 3kg Q1= 0,5.(100-35).380 = 12 350 (J)
t1=100°C Áp dụng phương trình cân bằng nhiệt ta có:
t=35°C Q1 = Q2 = 3. △2.4200 = 12 350 (J)
c1= 380J/kg.K => △t = \(\dfrac{12350}{3.4200}\) =1,47 (°C)
c2= 4200J/kg.K Vậy miếng đồng tăng lên 1,47°C
____________
△t = ? (°C)
Tóm tắt
\(m_1=600g=0,6kg\\ t_1=100^0C\\ m_2=2,5kg\\ t=30^0C\\ \Rightarrow\Delta t_1=t_1-t=100-30=70^0C\\ c_1=380J/kg.K\\ c_2=4200J/kg.K\)
_________
\(\Delta t_2=?^0C\\\)
Giải
Nhiệt độ nước nóng lên là:
\(Q_1=Q_2\Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\\ \Leftrightarrow0,6.380.70=2,5.4200.\Delta t_2\\ \Leftrightarrow15960=10500\Delta t_2\\ \Leftrightarrow\Delta t_2=1,52^0C\)
Tóm tắt
\(m_1=0,4kg\\ t_1=120^0C\\ m_2=1,5kg\\ t=35^0C\\ c_1=460J/kg.K\\ c_2=4200J/kg.K\Rightarrow\Delta t_1=t_1-t=120-35=85^0C\)
____________
\(\Delta t_2=?^0C\\ t_2=?^0C\)
Giải
Nhiệt độ nước tăng thêm là:
Theo phương trình cân bằng nhiệt:
\(Q_1=Q_2\\ \Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\\ \Leftrightarrow0,4.460.85=1,5.4200.\Delta t_2\\ \Leftrightarrow15640=6300\Delta t_2\\ \Leftrightarrow\Delta t_2\approx2,5^0C\)
Nhiệt độ ban đầu của nước là:
\(\Delta t_2=t-t_2\Rightarrow t_2=t-\Delta t=35-2,5=32,5^0C\)