K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xin chào thầy cô và các bạn trong hoc24Đầu tiên em chúc thầy cô và các bạn sang năm mới nhiều thành công trong công việc và học tập . Vậy là một năm nữa đã trôi qua để lại cho ta nhiều kỉ niệm đẹp trong suốt một khóa học vừa qua . Cảm ơn thầy cô và các bạn trong hoc24 đã luôn tin tưởng và ủng hộ mình , đặc biệt xin gửi lời cảm ơn đặc biệt đến mọi người trong hoc24 đã luôn đồng hành , giúp em có nền...
Đọc tiếp

Xin chào thầy cô và các bạn trong hoc24
Đầu tiên em chúc thầy cô và các bạn sang năm mới nhiều thành công trong công việc và học tập . Vậy là một năm nữa đã trôi qua để lại cho ta nhiều kỉ niệm đẹp trong suốt một khóa học vừa qua . 
Cảm ơn thầy cô và các bạn trong hoc24 đã luôn tin tưởng và ủng hộ mình , đặc biệt xin gửi lời cảm ơn đặc biệt đến mọi người trong hoc24 đã luôn đồng hành , giúp em có nền kiến thức vững chắc trong học tập cũng như mở các cuộc thi , sự kiện giúp chúng em có cơ hội để vui chơi để thử sức mình . Năm 2022 mình đã chưa thể làm hết tất cả những mong ước mà mình ấp ủ từ lâu như gắn mốc ''3000'' câu trả lời và ''5000''sp . Sang năm 2023 mình sẽ cố gắng hoàn thiện tất cả những mong ước của mình . 
Cảm ơn những thầy cô đã đồng hành cùng em điển hình như : 
1.Thầy Hà Đức Thọ 
2.Cô Đỗ Quyên 
3.Thầy Thành Đô 
4.Cô Ngô Phương 
5.Thầy MinhLe
Em chỉ viết ra 1 số thầy cô đã đồng hành cùng em , kể cả là tất cả thầy cô khác cũng luôn đồng hành cùng em . 
1 số CTVVIP luôn đồng hành cùng em điển hình như : 
1.Lê Nhật Ninh
2.Đỗ Thanh Hải
3.POP POP
Tuy hoc24 rất ít CTVVIP mong rằng năm 2023 sẽ có nhiều CTVVIP hơn cảm ơn các bạn CTVVIP.
Các CTV tích cực nhất trong năm điển hình như : 
1.Dzịt
2.Lãnh Hàn
3.^JKIES Nguyễn^
4._Sunn So Sad_
Cảm ơn các CTV đã đóng góp nhiều cho hoc24.
Thành viên tích cực trong tháng điển hình : 
+) Box Toán : 
1.Nguyễn Thị Thương Hoài
2.Khánh Linh
3.TimeSun
4.Ngô Hải Nam
+) Box Tiếng Anh
1.Anh Thư Bùi
2.(.I_CAN_FLY.)
3.Bảo Chu Văn An
4.Khánh Linh
+) Box Ngữa Văn : 
1.Đoàn Trần Quỳnh Hương
2.TimeSun
3.Fidelia Rosebella
4.Đức Minh
Những bạn này là thành viên hăng hái trong tháng 
Các thành viên tích cực nhất trong năm 2022 :
1.Anh Thư Bùi (Box Tiếng Anh)
2.TimeSun (Box Toán)
3.Lê Nguyễn Bảo Thư (Box Toán)
4.Khánh Linh (Box Toán)
5.Van Toan (Box Toán)
6.Nguyễn Thị Thương Hoài (Box Toán)
7.^JKIES Nguyễn^ (Box Toán)
8.Bảo Chu Văn An (Box Tiếng Anh x Toán)
9.Nguyễn Thị Hương Giang (Box Vật Lý)
10.Nguyễn Ngân Hòa (Box Vật Lý)
11.Lãnh Hàn (Box Sinh Học)
12.Kudo Shinichi (Box Hóa Học)
13.(.I_CAN_FLY.)(Box Tiếng Anh)
Và có rất rất nhiều bạn thành viên tích cực nhất trong năm 2022 . Sang năm 2023 mong mọi người vẫn giữ nguyên thứ hạng của mình . 
Cuối cùng chúc mọi người năm mới có nhiều niềm vui và thành công trong công việc , việc học , cảm ơn mọi người rất nhiều . 
Goodbye 2022. Thank you for following me to the end. Although 2022 leaves, many people still have the memories of 2022 in the hearts of many people.
______________________________________________________________
Đề : Cảm nghĩ của bạn về những kỉ niệm trong năm 2022 . (Thời gian từ 1/1/2023 - 6/1/2023) 

loading...

19
HD
1 tháng 1 2023

Cảm ơn em, chúc em và cộng đồng hoc24 chúng ta một năm với nhiều sức khỏe, niềm vui và hạnh phúc.

31 tháng 12 2022

Xin lỗi các bạn vì mai mình có việc nên mình sẽ đăng trước nhé . Cảm ơn các bạn

6 tháng 3 2019

cảm ơn bạn rất nhiều

cảm ơn 

3 tháng 1 2023

Em xin giải bài toán kia nhé :)

Trước hết ta có hằng đẳng thức:

\(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=\left(x+y\right)^5\)

Biến đổi hằng đẳng thức trên:

\(x^5+y^5+5xy\left(x^3+2x^2y+2xy^2+y^3\right)=\left(x+y\right)^5\)

\(\Rightarrow x^5+y^5+5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]=\left(x+y\right)^5\)

\(\Rightarrow x^5+y^5+5xy\left(x+y\right)\left(x^2+xy+y^2\right)=\left(x+y\right)^5\) (*)

Quay lại bài toán trên:

Theo BĐT Cauchy ta có:

\(\left\{{}\begin{matrix}\sqrt{xy}\le\dfrac{x+y}{2}\left(1\right)\\2xy\le x^2+y^2\Rightarrow3xy\le x^2+xy+y^2\Rightarrow xy\le\dfrac{x^2+xy+y^3}{3}\left(2\right)\end{matrix}\right.\)

Vì cả 2 vế của BĐT (1) và (2) đều dương nên lấy \(\left(1\right).\left(2\right)\) ta được:

\(xy\sqrt{xy}\le\dfrac{1}{6}\left(x+y\right)\left(x^2+xy+y^2\right)\)

\(\Rightarrow x^5+2023xy.xy\sqrt{xy}+y^5\le x^5+\dfrac{2023}{6}xy.\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\left(3\right)\)

Đặt \(A=x^5+\dfrac{2023}{6}xy.\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\)

\(=\dfrac{6x^5+2023xy\left(x+y\right)\left(x^2+xy+y^2\right)+6y^5}{6}\)

\(=\dfrac{6\left[x^5+5xy\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\right]+1993xy\left(x+y\right)\left(x^2+xy+y^2\right)}{6}\)

Áp dụng (*) ta có:

\(A=\dfrac{6\left(x+y\right)^5+1993xy\left(x+y\right)\left(x^2+xy+y^2\right)}{6}\left(4\right)\)

Ta có: \(xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

\(=\dfrac{1}{3}.3xy\left(x^2+xy+y^2\right)\left(x+y\right)\)

Theo BĐT Cauchy ta có:

\(3xy\left(x^2+xy+y^2\right)\le\left[\dfrac{3xy+\left(x^2+xy+y^2\right)}{2}\right]^2=\left[\dfrac{\left(x+y\right)^2+2xy}{2}\right]^2\left('\right)\)

\(xy\le\left(\dfrac{x+y}{2}\right)^2=\dfrac{\left(x+y\right)^2}{4}\left(''\right)\)

Từ (') và ('') ta có:

\(3xy\left(x^2+xy+y^2\right)\le\left[\dfrac{\left(x+y\right)^2+2.\dfrac{\left(x+y\right)^2}{4}}{2}\right]^2=\left[\dfrac{3}{4}\left(x+y\right)^2\right]^2=\dfrac{9}{16}\left(x+y\right)^4\)

\(\Rightarrow xy\left(x^2+xy+y^2\right)\le\dfrac{3}{16}\left(x+y\right)^4\)

\(\Rightarrow xy\left(x+y\right)\left(x^2+xy+y^2\right)\le\dfrac{3}{16}\left(x+y\right)^5\left(5\right)\)

Từ (4), (5) ta có:

\(A\le\dfrac{6\left(x+y\right)^5+1993.\dfrac{3}{16}\left(x+y\right)^5}{6}=\dfrac{\dfrac{6075}{16}\left(x+y\right)^5}{6}=\dfrac{2025}{32}\left(x+y\right)^5\)

\(\Rightarrow A\le\dfrac{2025}{32}\left(x+y\right)^5\) hay 

\(x^5+\dfrac{2023}{6}xy\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\le\dfrac{2025}{32}\left(x+y\right)^5\left(6\right)\)

Từ (3), (6) ta có:

\(x^5+2023x^2y^2\sqrt{xy}+y^5\le\dfrac{2025}{32}\left(x+y\right)^5\)

\(\Rightarrow\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}\le\sqrt[5]{2025}.\dfrac{x+y}{2}\left(1'\right)\)

Mặt khác theo BĐT Cauchy ta có:

\(\sqrt{xy}\le\dfrac{x+y}{2}\left(2'\right)\)

Vì cả 2 vế của (1') và (2') đều dương nên lấy \(\left(1'\right).\left(2'\right)\) ta được:

\(\sqrt{xy}.\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}\le\sqrt[5]{2025}.\dfrac{\left(x+y\right)^2}{4}\)

\(\Rightarrow\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(x+y\right)^2}\left(7\right)\)

CMTT ta cũng có:

\(\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(y+z\right)^2}\left(8\right)\)

\(\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(z+x\right)^2}\left(9\right)\)

Lấy \(\left(7\right)+\left(8\right)+\left(9\right)\) rồi nhân mỗi vế của BĐT mới cho \(\left(x+y+z\right)^2\) ta được:

\(\left(x+y+z\right)^2\left(\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}+\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}+\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\right)\)\(\ge\dfrac{4}{\sqrt[5]{2025}}\left(x+y+z\right)^2\left[\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\right]\left(10\right)\)

Theo BĐT Cauchy ta có:

\(\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\ge3.\sqrt[3]{\dfrac{1}{\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2}}\)

\(\ge3.\sqrt[3]{\dfrac{1}{\left[\left(\dfrac{x+y+y+z+z+x}{3}\right)^3\right]^2}}\)

\(=3.\sqrt[3]{\dfrac{1}{\left[\dfrac{2}{3}\left(x+y+z\right)\right]^6}}=3.\dfrac{1}{\left[\dfrac{2}{3}\left(x+y+z\right)\right]^2}=\dfrac{27}{4\left(x+y+z\right)^2}\)

\(\Rightarrow\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\ge\dfrac{27}{4\left(x+y+z\right)^2}\left(11\right)\)

Từ (10) và (11) ta có:

\(\left(x+y+z\right)^2\left(\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}+\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}+\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\right)\)

\(\ge\dfrac{4}{\sqrt[5]{2023+2}}.\left(x+y+z\right)^2.\dfrac{27}{4\left(x+y+z\right)^2}=\dfrac{27}{\sqrt[5]{2023+2}}\left(đpcm\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

 

 

1 tháng 1 2023

lâu rồi không gặp a, chúc mừng năm mới a, mà cái phương trình này lớp 9 còn e mới lớp 8 :)))))))))))))))

31 tháng 12 2015

Sắp đến năm mới , mình chúc ONLINE MATH và các bạn học sinh chăm ngoan , học giỏi .

28 tháng 9 2021

Cái gì vậy trời? Bạn có bị làm sao ko đấy?

28 tháng 9 2021

bạn bị làm sao ý?

sao bạn ko trl đi?

mắc mớ j chửi tr?

đã chửi lại còn chửi sai?

stupids?

Ở thành phố T có một cặp sinh đôi khá đặc biệt. Tên hai cô là Nhất và Nhị. Những điều ly kỳ về hai cô lan truyền đi khắp nơi. Cô Nhất không có khả năng nói đúng vào những ngày thứ hai, thứ ba và thứ tư, còn những ngày khác nói đúng. Cô Nhị nói sai vào những ngày thứ ba, thứ năm và thứ bảy, còn những ngày khác nói đúng.Một lần tôi gặp hai cô và hỏi một trong hai người:- Cô hãy cho...
Đọc tiếp

Ở thành phố T có một cặp sinh đôi khá đặc biệt. Tên hai cô là Nhất và Nhị. Những điều ly kỳ về hai cô lan truyền đi khắp nơi. Cô Nhất không có khả năng nói đúng vào những ngày thứ hai, thứ ba và thứ tư, còn những ngày khác nói đúng. Cô Nhị nói sai vào những ngày thứ ba, thứ năm và thứ bảy, còn những ngày khác nói đúng.
Một lần tôi gặp hai cô và hỏi một trong hai người:
- Cô hãy cho biết, trong hai người cô là ai?
- Tôi là Nhất.
- Cô hãy nói thêm, hôm nay là thứ mấy?
- Hôm qua chủ nhật.
Cô kia bỗng xem vào:
- Ngày mai là thứ sáu.
Tôi sững sờ ngạc nhiên-Sao lại thế được?-và quay sang hỏi cô đó:
- Cô cam đoan là cô nói thật chứ?
- Ngày thứ tư tôi luôn luôn nói thật – cô đó trả lời.
Hai cô làm tôi lúng túng thực sự, nhưng sau một hồi suy nghĩ tôi đã xác định được cô nào là cô Nhất, cô nào là cô Nhị, thậm chí còn xác định được ngày hôm đó là thứ mấy.
Mời bạn hãy thử làm xem.

1
26 tháng 12 2015

Dựa vào câu đầu tiên: Tôi là Nhất => Loại ngày thứ 2, 3, 4 vì 
Thứ 2, 3, 4 Nhất nói sai nên ko thể là Nhất, 
=> Câu nói đó là của Nhị
Vậy 2 câu còn lại là của Nhất, mà Nhất ko thể nói đúng ở các ngày thứ 2,3,4(các ngày này đã bị loại trừ) => 2 câu của Nhất là đúng
Vậy kết quả cuối cùng: hôm nay là thứ 5 

Gọi số tiền 1 bạn lớp 9D và 1 bạn lớp 9A có thể góp được tối đa lần lượt là a,b

Theo đề, ta có: 34a-38b=130000 và 30a-35b=100000

=>a=15000 và b=10000

Số tiền lớp 9A thu được là:

15000*30=450000(đồng)

=>Đạt mục tiêu

Số tiền lớp 9D thu đuọc là:

10000*35=350000(đồng)<400000

=>Ko đạt mục tiêu