K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

giúp mình với :))

19 tháng 3 2017

Dùng bất đẳng thức Bu-nhi-a là ra rồi

18 tháng 3 2017

(X+y)2=x2+y2+2xy

Lại có: 2xy <= x2+y2

=> (x+y)2 <= x2+y2+x2+y2=2.(x2+y2)=2.1=2

=> Giá trị lớn nhất của (x+y)2 là 2

3 tháng 3 2017

GTLN cua (x+y)2 là 2

21 tháng 3 2021

Tìm GTLN:

Xét hiệu $2.(x^2+y^2)-(x+y)^2=2.(x^2+y^2)-x^2-y^2-2xy=x^2-2xy+y^2=(x-y)^2 \geq 0$

Nên $(x+y)^2 \leq 2.(x^2+y^2)=2$ (do $x^2+y^2=1$)

Dấu $=$ xảy ra $⇔(x-y)^2=0;x^2+y^2=1⇔x=y;x^2+y^2=1⇔x=y=\dfrac{1}{\sqrt[]2}$

Tìm Min:

Có $(x+y)^2 \geq 0$ với mọi $x;y$

Dấu $=$ xảy ra $⇔(x+y)^2=0;x^2+y^2=0⇔x=-y;x^2+y^2=1⇔x=\dfrac{1}{\sqrt[]2};y=-\dfrac{1}{\sqrt[]2}$ và hoán vị