Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số xác định khi \(\left\{{}\begin{matrix}x^2+2mx+2018m+2019>0\\mx^2+2mx+2020\ge0\end{matrix}\right.\)
Xét \(f\left(x\right)=x^2+2mx+2018m+2019\)
Có: \(\Delta'=m^2-2018m-2019\)
Để \(f\left(x\right)>0\) thì \(\Delta'< 0\Leftrightarrow m^2-2018m-2019< 0\Leftrightarrow-1< m< 2019\)(*)
Xét \(g\left(x\right)=mx^2+2mx+2020\)
Dễ thấy \(m=0\) thì \(g\left(x\right)=\sqrt{2020}>0\)(1)
Để \(g\left(x\right)\ge0\) thì \(\left\{{}\begin{matrix}m>0\\\Delta'\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-2020m\le0\end{matrix}\right.\)\(\Leftrightarrow0< m\le2020\) (2)
(1),(2)\(\Rightarrow g\left(x\right)\ge0\Leftrightarrow0\le m\le2020\) (**)
(*),(**) suy ra hàm số xác định khi \(0\le m< 2019\)
Do đó tập hợp các giá trị nguyên của m để hàm số xác định là:
\(S=\left\{m\in Z|0\le m< 2019\right\}\) và tập hợp có 2019 phần tử
tham khảo
https://cungthi.online/cau-hoi/cho-tam-giac-abc-tap-hop-nhung-diem-m-thoaman-4mambmc-30238-1652.html
Gọi G là trọng tâm của ΔABC
⇒ \(3\overrightarrow{MG}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)
⇒ \(MA^2+MB^2+MC^{2^{ }}+2VT=9MG^2\)
⇒ VT = 9MG2 - MA2 + MB2 + MC2
⇒ \(\dfrac{a^2}{6}\) = 9MG2 - MA2 + MB2 + MC2
MA2 + MB2 + MC2
\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
= 3MG2 + 2\(\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)+ GA2 + GB2 + GC2
= 3MG2 + \(GA^2+GB^{2^{ }}+GC^2\)
do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Vậy ta có
\(\dfrac{a^2}{6}=6MG^2-GA^2-GB^2-GC^2\)
⇔ \(\dfrac{a^2}{6}+\left(GA^2+GB^2+GC^2\right)=6MG^2\)(1)
Lưu ý, GA,GB,GC lần lượt bằng \(\dfrac{2}{3}\) độ dài các đường trung tuyến kẻ từ A,B,C. Nhưng do ΔABC đều nên chúng sẽ lần lượt bằng \(\dfrac{2}{3}\) đường cao kẻ từ A,B,C (đặt là ha ; hb; hc)
Dễ dàng tìm được ha = hb = hc = \(\dfrac{a\sqrt{3}}{2}\)
⇒ GA = GB = GC = \(\dfrac{a\sqrt{3}}{3}\)
⇒ GA2 = GB2 = GC2 = \(\dfrac{a^2}{3}\)
⇒ GA2 + GB2 + GC2 = a2
Thay vào (1)
\(\dfrac{a^2}{6}+a^2=3MG^2\) ⇔ MG2 = \(\dfrac{7a^2}{18}\)
⇔ MG = \(\dfrac{a\sqrt{14}}{6}\)
Vậy R = \(\dfrac{a\sqrt{14}}{6}\)
Ai xem hộ sai chỗ nào vs
\(a^2=b^2+c^2-2bc.\cos A\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}=\sqrt{7^2+5^2-\dfrac{2.7.5.3}{5}}=4\sqrt{2}\)
\(\sin A=\sqrt{1-cos^2A}=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
\(p=\dfrac{a+b+c}{2}=6+2\sqrt{2}\)
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=14\)
\(R=\dfrac{a}{2.sinA}=\dfrac{4\sqrt{2}}{\dfrac{2.4}{5}}=\dfrac{5\sqrt{2}}{2}\)
\(r=\dfrac{S}{p}=\dfrac{14}{6+2\sqrt{2}}=3-\sqrt{2}\)
\(ha=\dfrac{2S}{a}=\dfrac{2.14}{4\sqrt{2}}=2\sqrt{2}\)
\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\)
\(\Leftrightarrow7^2+5^2-a^2=\dfrac{3}{5}\cdot2\cdot7\cdot5=3\cdot2\cdot7=42\)
\(\Leftrightarrow a^2=32\)
hay \(a=4\sqrt{2}\)
\(\sin A=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
Chọn B