Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{MN}{MP}=\dfrac{3}{4}\Rightarrow MN=\dfrac{3}{4}MP\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{MI^2}=\dfrac{1}{MN^2}+\dfrac{1}{MP^2}\)
\(\Leftrightarrow\dfrac{1}{\left(\dfrac{48}{5}\right)^2}=\dfrac{1}{\left(\dfrac{3}{4}MP\right)^2}+\dfrac{1}{MP^2}\)
\(\Rightarrow MP^2=\dfrac{20736}{625}\Rightarrow MP=\dfrac{144}{25}\)
\(\Rightarrow MN=\dfrac{3}{4}MP=\dfrac{108}{25}\)
\(NP=\sqrt{MN^2+MP^2}=\dfrac{36}{5}\)
b. Áp dụng hệ thức lượng:
\(MP^2=IP.NP\Rightarrow IP=\dfrac{MP^2}{NP}=\dfrac{576}{125}\)
\(S_{MIP}=\dfrac{1}{2}IP.MI=\dfrac{13824}{625}\)
a: Xét ΔMAP vuông tại P có \(tanP=\dfrac{MA}{AP}=\dfrac{7}{4,5}=\dfrac{14}{9}\)
=>\(\widehat{P}\simeq57^0\)
b: Xét ΔMNP vuông tại M có MA là đường cao
nên \(MA^2=AN\cdot AP\)
=>\(AN\cdot4,5=7^2=49\)
=>\(AN=\dfrac{98}{9}\left(cm\right)\)
NP=NA+AP
\(=\dfrac{98}{9}+\dfrac{9}{2}=\dfrac{277}{18}\left(cm\right)\)
Xét ΔMNP vuông tại M có MA là đường cao
nên \(\left\{{}\begin{matrix}MN^2=NA\cdot NP\\MP^2=PA\cdot PN\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}MN=\sqrt{\dfrac{98}{9}\cdot\dfrac{277}{18}}=\dfrac{7\sqrt{277}}{9}\left(cm\right)\\MP=\sqrt{4,5\cdot\dfrac{277}{18}}=\dfrac{\sqrt{277}}{2}\left(cm\right)\end{matrix}\right.\)
a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
b: Xét ΔMNP vuông tại M có MH là đường cao
nên MH*NP=MN*MP
=>MH*10=6*8=48
=>MH=4,8cm
Xét ΔMNP có MD là phân giác
nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)
c: MN*sinP+MP*sinN
=MN*MN/NP+MP*MP/NP
=(MN^2+MP^2)/NP
=NP^2/NP
=NP
Áp dụng PTG: \(MP=\sqrt{NP^2-MN^2}=16\left(cm\right)\)
\(\sin P=\dfrac{MN}{NP}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{P}\approx37^0\)
\(tanP=\dfrac{MN}{MP}\)
\(sinP=\dfrac{MN}{NP}\Rightarrow NP=\dfrac{MN}{sinP}=\dfrac{1,5}{\dfrac{5}{13}}=3,9\left(cm\right)\)