Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}a=2b\Leftrightarrow a=4b\)
\(\frac{9}{8}a=\frac{9}{8}.4b=\frac{9}{2}b=kb\Leftrightarrow k=\frac{9}{2}\)
\(\frac{2^n}{8^k}=\frac{2^n}{2^{3k}}=\frac{2^{3k+1}}{2^{3k}}=\frac{2^{3k}.2}{2^{3k}}=2\)
Bạn tham khảo tại đây:
Câu hỏi của Phạm Huyền Anh - Toán lớp 7 - Học toán với OnlineMath
\(\frac{2^n}{8^k}=\frac{2^{2k+1}}{2^{3k}}=2^{2k+1-3k}=2^{-k+1}=2^{-k}.2=\frac{1}{2^k}.2=\frac{2}{2^k}=\frac{1}{2^{k-1}}\)
Thay n = 2k + 1 vào
ta có: \(\frac{2^{2k+1}}{8^k}=\frac{2^{2k+1}}{\left(2^3\right)^k}=\frac{2^{2k+1}}{2^{3k}}=\frac{2^{2k}.2}{2^{3k}}=\frac{2}{2^k}\)
mik k cho bạn rồi đó Hân
pls k cho mik
:((((((((((((((((((
Bạn tham khảo tại đây nha!!
https://olm.vn/hoi-dap/detail/105992780559.html
Học tốt!!
\(Sn=1-1+1-\frac{1}{2^2}+1-\frac{1}{3}^2+...+1-\frac{1}{n^2}=n-\left(1+\frac{1}{2^2}+...+\frac{1}{n^2}\right)< n\)(1)
\(Sn>n-\left[\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n+1\right).n}\right]=n-\left(1-\frac{1}{n+1}\right)=n-1+\frac{1}{n+1}>n-1\)(2)
từ (1) và (2) => n-1<Sn<n => Sn k là số nguyên
\(A=3^2.3^{k+1}+3^{k+1}+2^2.2^{k+1}+2.2^{k+1}\)\(=3^{k+1}\left(3^3+1\right)+2^{k+1}\left(2^2+2\right)\)
\(A=28.3^{k+1}+6.2^{k+1}\)\(=6.\left(14.3^k+2^{k+1}\right)\) chia hết cho 6
3k+3 +3k+1+2k+3+2k+2=3k.9+3k.3+2k.8+2k.4=3k.12+2k.12=(3k+2K)12 chia het 6
Thay vào thì \(\frac{2^n}{8^k}=\frac{2^{3k+1}}{8^k}=\frac{\left(2^3\right)^k.2}{8^k}=\frac{8^k.2}{8^k}=2\)
Vậy với n=3k+1 thì \(\frac{2^n}{8^k}\)=2
Good ! - _-