K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

Thay vào thì \(\frac{2^n}{8^k}=\frac{2^{3k+1}}{8^k}=\frac{\left(2^3\right)^k.2}{8^k}=\frac{8^k.2}{8^k}=2\)

Vậy với n=3k+1 thì \(\frac{2^n}{8^k}\)=2

22 tháng 1 2017

Good  ! - _-

6 tháng 3 2016

\(\frac{2^n}{8^k}=\frac{2^n}{2^{3k}}=\frac{2^{3k+1}}{2^{3k}}=\frac{2^{3k}.2}{2^{3k}}=2\)

7 tháng 3 2016

\(\frac{2^n}{8^k}=\frac{2^{3k+1}}{8^k}=\frac{2^{3k}.2}{8^k}=\frac{\left(2^3\right)^k.2}{8^k}=\frac{8^k.2}{8^k}=2\)

Vậy.....

Violympic vòng 15 à?

7 tháng 3 2016

\(\frac{2n}{8k}=\frac{2.\left(3k+1\right)}{8k}=\frac{6k+2}{8k}=\frac{2.\left(3k+1\right)}{2.4k}=\frac{3k+1}{4k}\)

Vậy với n=3k+1 thì \(\frac{2n}{8k}=\frac{3k+1}{4k}\)

5 tháng 9 2016

\(\frac{2^n}{8^k}=\frac{2^{2k+1}}{2^{3k}}=2^{2k+1-3k}=2^{-k+1}=2^{-k}.2=\frac{1}{2^k}.2=\frac{2}{2^k}=\frac{1}{2^{k-1}}\)

5 tháng 9 2016

Thay n = 2k + 1 vào

ta có: \(\frac{2^{2k+1}}{8^k}=\frac{2^{2k+1}}{\left(2^3\right)^k}=\frac{2^{2k+1}}{2^{3k}}=\frac{2^{2k}.2}{2^{3k}}=\frac{2}{2^k}\)

15 tháng 9 2019

Bạn tham khảo tại đây:

Câu hỏi của Phạm Huyền Anh - Toán lớp 7 - Học toán với OnlineMath

26 tháng 11 2015

\(\frac{1}{2}a=2b\Leftrightarrow a=4b\)

\(\frac{9}{8}a=\frac{9}{8}.4b=\frac{9}{2}b=kb\Leftrightarrow k=\frac{9}{2}\)

20 tháng 7 2019

Thử ha! Lâu không làm quên mất cách làm rồi má ơi:((

Giả sử \(n^k⋮n-1\left(1\right)\Rightarrow n⋮n-1\) Vì:

Nếu n không chia hết cho n - 1 thì khi phân tích ra thừa số nguyên tố, n không chứa n - 1 nên nk cũng không chưa thừa số nguyên tố n - 1 suy ra nk không chia hết cho n - 1. Mâu thuẫn với điều giả sử (1)

Vậy \(n⋮n-1\Leftrightarrow\left(n-1\right)+1⋮\left(n-1\right)\Rightarrow1⋮\left(n-1\right)\)

Suy ra \(n-1\inƯ\left(1\right)=1\left(\text{không xét }-1\text{ vì n\ge3 nên }n-1\text{dương. Do vậy ta chỉ xét ước dương}\right)\Rightarrow n=2\)

Mà n = 2 không thỏa mãn đk nên không tồn tại n > 3 thỏa mãn n chia hết cho n - 1 tức là không tồn tại nk chia hết cho n - 1 (mẫu thuẩn với điều giả sử)

Do vậy ta có đpcm.

P/s: Sai thì thôi nhá, quên mất cách làm mọe rồi

3 tháng 11 2019

nk-1=(n-1)(nk-1-nk-2....+1) chia hết cho n-1

Ta thấy :

36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7

<=> 36n+1 - k . 33n + 9 ⋮ 7

Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )

Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )

Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu n lẻ thì k ≡ -5 ( mod 7 )