Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tính C
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)
Giả sử \(S_n\)là số nguyên
Ta có:
\(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)
\(S_n=0+\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\) (\(\frac{1^2-1}{1}=\frac{1-1}{1}=\frac{0}{1}=0\))
\(S_n=1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\) (Số 0 bỏ đi)
\(S_n=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\) (1 + 1 +... + 1 có n-2 + 1 = n - 1 số 1)
Mà 1 + 1 + ... + 1 ( có n-1 số 1) luôn là số nguyên để \(S_n\)là số nguyên thì:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\inℤ\)
Ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
Ta thấy rằng:
\(\frac{1}{2.3}=\frac{1}{6}< \frac{1}{2^2}=\frac{1}{4}< \frac{1}{2}=\frac{1}{1.2}\)
\(\frac{1}{3.4}=\frac{1}{12}< \frac{1}{3^2}=\frac{1}{9}< \frac{1}{6}=\frac{1}{2.3}\)
......
\(\frac{1}{n.\left(n+1\right)}< \frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+... +\frac{1}{n}-\frac{1}{n+1}\) \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=\frac{1}{2}-\frac{1}{n+1}=\frac{n+1-2}{2n+2}=\frac{n-1}{2n+2}>0\) (Do n > 1) \(=1-\frac{1}{n}< 1\)
=> 0 < \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)<1
=> Biểu thức đó không phải là số nguyên
=> Giả sử sai
=> Sn không là số nguyên với mọi n thuộc N và n > 1
Do p là số nguyên tố nên \(p-1\) là số chẵn , suy ra : \(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)
\(=\left(\frac{1}{1}+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+\left(\frac{1}{3}+\frac{1}{p-3}\right)+...+\left(\frac{1}{\frac{p-1}{2}}+\frac{1}{\frac{p+1}{2}}\right)\)
\(=\frac{p}{1.\left(p-1\right)}+\frac{p}{2.\left(p-2\right)}+\frac{p}{3.\left(p-3\right)}+...+\frac{p}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\)
\(=p\left[\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+\frac{1}{3.\left(p-3\right)}+...+\frac{1}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\right]\)
Ta có : \(1.\left(p-1\right).2.\left(p-2\right)...\frac{p-1}{2}.\frac{p+1}{2}=\left(p-1\right)!\)
Suy ra : \(\frac{m}{n}\) có dạng :
\(\frac{m}{n}=p\frac{q}{\left(p-1\right)!}\Rightarrow m\left(p-1\right)!=npq\Rightarrow m\left(p-1\right)!⋮p\)mà \(\left(p-1\right)!⋮̸p\) nên \(\Rightarrow m⋮p\).
Chúc bạn học tốt nha !!!
\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)
\(\frac{m}{n}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+...+\)\(\left(\frac{1}{\left(p-1\right):2}+\frac{1}{\left(p-1\right):2+1}\right)\)
\(\frac{m}{n}=p.\)(\(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+...+\)\(\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\))
MC: 1.2.3...(p-1)
Gọi các thừa số phụ lần lượt là: k1;k2;k3;...;kp-1
Khi đó, \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+...+k_{p-1},\right)}{1.2.3...\left(p-1\right)}\)
Do p nguyên tố > 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p
=> m chia hết cho p (đpvm)
\(\frac{m}{p}=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{p-1}\)
\(\frac{m}{p}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+....+\left(1+\frac{1}{\left(p-1\right):2}\right)+\left(1+\frac{1}{\left(p-2\right):2}\right)\)
\(\frac{m}{n}=p\left(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+........+\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\right)\)
MC:1.2.3....(p-1)
Gọi các thừa số phụ lần lượt là \(k_1;k_2;k_3;.....;k_{p-1}\)
Khi đó: \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+....+k_{\left(p-1\right)}\right)}{1.2.3....\left(p-1\right)}\)
Do p là nguyên tố lớn hơn 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p
\(\Rightarrow\)m chia hết cho p (đpcm)
Bạn tham khảo tại đây nha!!
https://olm.vn/hoi-dap/detail/105992780559.html
Học tốt!!
\(Sn=1-1+1-\frac{1}{2^2}+1-\frac{1}{3}^2+...+1-\frac{1}{n^2}=n-\left(1+\frac{1}{2^2}+...+\frac{1}{n^2}\right)< n\)(1)
\(Sn>n-\left[\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n+1\right).n}\right]=n-\left(1-\frac{1}{n+1}\right)=n-1+\frac{1}{n+1}>n-1\)(2)
từ (1) và (2) => n-1<Sn<n => Sn k là số nguyên