Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n-1}< 1\)
=>\(0< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) không phải là số nguyên
mà n -1 là số nguyên
=> \(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)
\(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)không là số nguyên
Giả sử \(S_n\)là số nguyên
Ta có:
\(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)
\(S_n=0+\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\) (\(\frac{1^2-1}{1}=\frac{1-1}{1}=\frac{0}{1}=0\))
\(S_n=1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\) (Số 0 bỏ đi)
\(S_n=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\) (1 + 1 +... + 1 có n-2 + 1 = n - 1 số 1)
Mà 1 + 1 + ... + 1 ( có n-1 số 1) luôn là số nguyên để \(S_n\)là số nguyên thì:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\inℤ\)
Ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
Ta thấy rằng:
\(\frac{1}{2.3}=\frac{1}{6}< \frac{1}{2^2}=\frac{1}{4}< \frac{1}{2}=\frac{1}{1.2}\)
\(\frac{1}{3.4}=\frac{1}{12}< \frac{1}{3^2}=\frac{1}{9}< \frac{1}{6}=\frac{1}{2.3}\)
......
\(\frac{1}{n.\left(n+1\right)}< \frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+... +\frac{1}{n}-\frac{1}{n+1}\) \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=\frac{1}{2}-\frac{1}{n+1}=\frac{n+1-2}{2n+2}=\frac{n-1}{2n+2}>0\) (Do n > 1) \(=1-\frac{1}{n}< 1\)
=> 0 < \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)<1
=> Biểu thức đó không phải là số nguyên
=> Giả sử sai
=> Sn không là số nguyên với mọi n thuộc N và n > 1
\(\frac{m}{p}=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{p-1}\)
\(\frac{m}{p}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+....+\left(1+\frac{1}{\left(p-1\right):2}\right)+\left(1+\frac{1}{\left(p-2\right):2}\right)\)
\(\frac{m}{n}=p\left(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+........+\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\right)\)
MC:1.2.3....(p-1)
Gọi các thừa số phụ lần lượt là \(k_1;k_2;k_3;.....;k_{p-1}\)
Khi đó: \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+....+k_{\left(p-1\right)}\right)}{1.2.3....\left(p-1\right)}\)
Do p là nguyên tố lớn hơn 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p
\(\Rightarrow\)m chia hết cho p (đpcm)
Ta có : D = \(2\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{25}+.....+\frac{1}{n\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{n\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow D=1-\frac{1}{n+1}=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)
Vậy D không phải là số nguyên (đpcm)
\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n\left(n+2\right)}\right)\)
\(D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n\left(n+2\right)}\)
\(D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\)
\(D=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{\left(n+2\right)-n}{n\left(n+2\right)}\)
\(D=\frac{3}{1.3}-\frac{1}{1.3}+\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+...+\frac{\left(n+2\right)}{n\left(n+2\right)}-\frac{n}{n\left(n+2\right)}\)
\(D=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(D=\frac{1}{1}-\frac{1}{n+2}\)
\(D=\frac{n+2}{n+2}-\frac{1}{n+2}\)
\(D=\frac{n+2-1}{n+2}\)
\(D=\frac{n+1}{n+2}\Rightarrow D\notin Z\left(dpcm\right)\)
1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)
=> còn lại thì bạn có thể tự chứng minh
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
Chúc bạn học tốt!
Bạn tham khảo tại đây nhé:
Câu hỏi của Nguyên Phạm Trí - Toán lớp 7 - Học toán với ...