Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=>\(\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}\)
Áp dụng t/c dãy tỉ số=nhau:
\(\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}\)\(=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\frac{x+2y+z}{9a}\left(1\right)\)
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=>\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
Áp dụng t/c dãy tỉ số=nhau:
\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\)\(\frac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b-c}=\frac{2x+y-z}{9b}\left(2\right)\)
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=>\(\frac{4x}{4a+8b+4c}=\frac{4y}{8a+4b-4c}=\frac{z}{4a-4b+c}\)
Áp dụng t/c dãy tỉ số=nhau:
\(\frac{4x}{4a+8b+4c}=\frac{4y}{8a+4b-4c}=\frac{z}{4a-4b+c}=\)\(\frac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}=\frac{4x-4y+z}{9c}\left(3\right)\)
Từ (1);(2);(3) ta có dãy tỉ số=nhau:
\(\frac{x+2y+z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)
=>\(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\) (đpcm)
(*) bài này thiếu dữ kiện:" giả thiết các tỉ số đều có nghĩa" nhé,phải có dữ liệu đó mới suy ra đpcm được
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{x}{4a-4b+6}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y+z}\)
Giải:
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{9a}\left(1\right)\)
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-z}{9b}\left(2\right)\)
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{9c}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)hay
\(\dfrac{a}{x+2y+z}=\dfrac{b}{2z+y-z}=\dfrac{c}{4x-4y+z}\) cùng = 9
Ta có: \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}.\)
\(\Rightarrow\frac{2x}{2a+4b+2c}=\frac{2y}{4a+2b-2c}.\)
\(\Rightarrow\frac{4x}{4a+8b+4c}=\frac{4y}{8a+4b-4c}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
Từ \(\left(1\right),\left(2\right)và\left(3\right)\Rightarrow\frac{x+2y+z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}.\)
\(\Rightarrow\frac{x+2y+z}{a}=\frac{2x+y-z}{b}=\frac{4x-4y+z}{c}.\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\left(đpcm\right).\)
Chúc bạn học tốt!
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\left(1\right)\)
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\left(2\right)\)
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{9c}\left(3\right)\)
Từ ( 1 ) ,( 2 ), ( 3 ) \(\Rightarrow\frac{x+2y+z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)hay \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)( Vì cùng bằng 9 )
Quan trọng: OLM miễn phí sử dụng cho học sinh và giáo viên trên toàn quốc trong thời gian nghỉ dịch xem thêm. Online Math ...
SaI đề gì mới đúng
Từ :\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{x}{4a-4b+z}\)
\(\Rightarrow\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
\(\Rightarrow\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{b}{2x+y-z}\left(1\right)\)
\(\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a}{x+2y+z}\left(2\right)\)
\(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-ab+c}{z}=\frac{c}{4x-4y+z}\left(3\right)\)
Từ (1) (2) (3) ta được đpcm