Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD
Ta cần chứng minh: \(S_{FGH}=\frac{1}{2}S_{ABCD}\)
\(S_{FGH}=S_{FAD}-S_{FAG}-S_{FDH}-S_{AGD}-S_{DGH}\)
\(=S_{AFD}-\frac{1}{2}\left(S_{FAC}+S_{FBD}\right)-\frac{1}{2}S_{ACD}-\frac{1}{2}S_{DGB}\)
\(=S_{ACD}+S_{ABC}+S_{FBC}-\frac{1}{2}\left(S_{ABC}+S_{FBC}+S_{DBC}+S_{FBC}\right)-\frac{1}{2}S_{ACD}\)
\(-\frac{1}{2}\left(S_{ACD}+S_{ABC}-S_{ADG}-S_{ABG}-S_{DBC}\right)\)
\(=\frac{1}{2}\left(S_{ADG}+S_{ABG}\right)=\frac{1}{2}.\frac{1}{2}\left(S_{ACD}+S_{ABC}\right)=\frac{1}{4}S_{ABCD}\left(đpcm\right)\)
Giải
Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD
Ta cần chứng minh: SFGH=12 SABCD
SFGH=SFAD−SFAG−SFDH−SAGD−SDGH
=SAFD−12 (SFAC+SFBD)−12 SACD−12 SDGB
=SACD+SABC+SFBC−12 (SABC+SFBC+SDBC+SFBC)−12 SACD
−12 (SACD+SABC−SADG−SABG−SDBC)
=12 (SADG+SABG)=12 .12 (SACD+SABC)=14 SABCD(đpcm)
O là tâm đường tròn ngoại tiếp tam giác ABC nên ta vẽ đường kính AOE
Tứ giác BHCE là hình bình hành
M là trung điểm của BC. Do đó M là trung điểm của HE.
Kết hợp với O là trung điểm của AE suy ra OM là đường trung bình của \(\Delta AHE\)
\(\Rightarrow OM=\frac{1}{2}AH\)hay 2OM = AH
Vậy khoảng cách từ trực tâm tới đỉnh bằng 2 lần khoảng cách từ giao điểm các đường trung trực tới cạnh đối diện đỉnh đó (đpcm)