Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) số đó là: 300*7=2100
b)số đó nhân 10 thì được: 2100*10=21000
rồi mình tích lại cho
Mình nghĩ đây chắc chắn không phải toán 1 đâu nhưng mình vẫn giải bài này nhé:
Đặt \(a=p_1^{k_1}p_2^{k_2}...p_n^{k_n}\) và \(b=p_1^{l_1}p_2^{l_2}...p_n^{l_n}\) (phân tích tiêu chuẩn của a và b)
Khi đó \(a.b=p_1^{k_1+l_1}p_2^{k_2+l_2}...p_n^{k_n+l_n}\)
Lại có \(\left(a;b\right)=p_1^{min\left\{k_1,l_1\right\}}p_2^{min\left\{k_2,l_2\right\}}...p_n^{min\left\{k_n,l_n\right\}}\)
\(\left[a;b\right]=p_1^{max\left\{k_1,l_1\right\}}p_2^{max\left\{k_2,l_2\right\}}...p_n^{max\left\{k_n,l_n\right\}}\)
Suy ra \(\left(a;b\right)\left[a;b\right]=p_1^{min\left\{k_1,l_1\right\}+max\left\{k_1,l_1\right\}}p_2^{min\left\{k_2,l_2\right\}+max\left\{k_2,l_2\right\}}...p_n^{min\left\{k_n,l_n\right\}+max\left\{k_n,l_n\right\}}\)
\(=p_1^{k_1+l_1}p_2^{k_2+l_2}...p_n^{k_n+l_n}\)
\(=ab\)
Vậy \(ab=\left(a;b\right).\left[a;b\right]\)
Do đó nếu \(ab=1293\) thì \(\left(a;b\right).\left[a;b\right]=1293\)
neu a=b thi b=a nha ban!
neu a=b thi b=a nha ban!
neu a=b thi b=a nha ban!
neu a=b thi b=a nha ban!
neu A=B THI B=A