Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A là ( 76 + 38 ) : 2 = 57
B là 57 - 38 = 19
A : B là 57 : 19 = 3
Có : A = a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc-abc
= a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+abc
= (a^2b+ab^2+abc)+(b^2c+bc^2+abc)+(c^2a+ca^2+abc)-2abc
= (a+b+c).(ab+bc+ca)-2abc
Vì a+b+c chia hết cho 4 => (a+b+c).(ab+bc+Ca) chia hết cho 4 và a+b+c chẵn
a+b+c chẵn => trong 3 số a,b,c có 1 nhất 1 số chẵn vì nếu cả 3 số đều lẻ thì a+b+c lẻ
=> abc chia hết chi 2 => 2abc chia hết cho 4
=> A chia hết cho 4
=> ĐPCM
Tk mk nha
Lời giải:
Ta có:
$Q=(a+b)(b+c)(c+a)-abc=(a+b+c)(ab+bc+ac)-abc-abc$
$=(a+b+c)(ab+bc+ac)-2abc$
Ta thấy:
$a+b+c\vdots 4$ nên $a+b+c$ chẵn. Do đó phải tồn tại ít nhất 1 trong 3 số $a,b,c$ là số chẵn.
$\Rightarrow abc\vdots 2$
$\Rightarrow 2abc\vdots 4(1)$
$a+b+c\vdots 4\Rightarrow (a+b+c)(ab+bc+ac)\vdots 4(2)$
Từ $(1);(2)\Rightarrow Q\vdots 4$
Ta có đpcm.
Giả sử a+b không chia hết cho 5
Suy ra:
\(\left(a+b\right)^5\)không chia hết cho 5
\(\Leftrightarrow a^5+b^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4\)không chia hết cho 5
\(\Leftrightarrow\left(a^5+b^5\right)+5\cdot A\)không chia hết cho 5
\(\Leftrightarrow a^5+b^5\)không chia hết cho 5
Phản giả thiết
Vậy ......
Nếu không sử dụng phản chứng ta có thể chứng minh bằng pp khai triển giả thiết
\(a^5+b^5=\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)⋮5\)
Suy ra: \(\left(a+b\right)⋮5\)
Cũng có thể giải bằng quy nạp toán học
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
a = (76 + 38) : 2= 57
b = 76 - 57 = 19
a : b = 57 : 19 = 3
a là: (76+38)/2=57
b là: 57-38=19
Vậy a chia b là: 57/19=3