Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2-b2=(a+b)(a-b)=97
=>(a+b) thuộc Ư(97)={-97,-1,97,1}
Vì a, b nguyên dương=>a,b>0 =>a+b>1
=>a+b=97 <=>a-b=1
=>a=49 =>b=48
=>a2+b2=.............................
@ thanhtinh không được cũng phải cố cho nó được chứ:
\(a^2-b^2=90\Rightarrow a^2+b^2=90+2b^2\)
Lấy kết luận cua @thanhtinh là: không thấy b=>theo tính chất giao hoán=> b thấy không => b=0
Vậy \(a^2+b^2=90\)
chỉ có thuyền mới hiểu....
Cân bằng phương trình VĂN-TOÁN
"Nếu em là thuyền thì Anh xin là biển lớn"\(\Leftrightarrow\)"Nếu em là thuyền, Thì Anh vẫn là ...Anh"
a2 - b2 = 90 <=> (a - b)(a + b) = 90 => a + b và a - b là 2 ước của 90.
ĐK :- \(a,b\ge1\Rightarrow a+b\ge2\)
- (a + b) - (a - b) = 2b (chẵn) => a + b và a - b cùng tính chẵn lẻ mà (a + b)(a - b) = 90 (chẵn) => a + b ; a - b cùng chẵn
Tuy nhiên,khi phân tích 90 ra thừa số nguyên tố,số mũ của thừa số 2 nhỏ hơn 2 (90 = 2.32.5) nên a + b và a - b không thể cùng chẵn
Vậy giá trị của a - b ; a + b ; a ; b và a2 + b2 đều không tìm được.
o0o Nguyễn o0o CTV làm kết luận thế là chưa đúng đâu nhé.
Ta có 97 là số nguyên tố
a2 - b2 = 97
<=> (a + b)(a - b) = 97
\(\Leftrightarrow\hept{\begin{cases}a-b=1\\a+b=97\end{cases}}\Leftrightarrow\hept{\begin{cases}a=49\\b=48\end{cases}}\)
=> a2 + b2 = 492 + 482 = 4705
Ta có: \(a^2-b^2=97\) => (a - b)(a + b) = 97 = 1.97 = 97.1 (vì 97 là số nguyên tố)
Vì a và b là hai số nguyên dương, mà a - b < a + b => a-b = 1 và a+b = 97
=> a = 49 , b = 48
Ta có 97 là số nguyên tố
a2-b2=97
<=>(a+b).(a-b)=97
\(\orbr{\begin{cases}a-b=1\\a+b=97\end{cases}}< =>\orbr{\begin{cases}a=49\\b=48\end{cases}}\)
Vay a=49 va b=48
tk cko mk nha.chuc ban hoc tot
Ta có: 2010 = 2.3.5.67
=> (a,b) = (1,2010;2,1005;3,670;5,402;6,335;10,201;15,134;30,67)
Nhỏ nhất khi a - b = 67 - 30 = 37
Ta đặt \(a^2+4b+3=k^2\)
\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)
Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)
Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)
\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)
\(\Leftrightarrow c^2+c+1+b=l^2\)
Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.
Nếu \(c< b< 2c+1\) thì
\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.
Do vậy, \(c=b\) hay \(a=2b+1\)
Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.
\(a^2-b^2=97\Leftrightarrow\left(a+b\right)\left(a-b\right)=1.97=97.1=\left(-1\right)\left(-97\right)=\left(-97\right)\left(-1\right)\)
giải hệ
a-b=1& a+b=97; a-b=97&a+b=1...
tìm được
a=49; b=48 => a^2+b^2
http://olm.vn/hoi-dap/question/766718.html
Chắc là 4705