Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow-\frac{3x-7}{5}=\frac{y+4}{3}\)
\(\Rightarrow-\frac{y+4}{3}-\frac{3x-7}{5}=0\)
\(\Rightarrow-\frac{5y+9x-1}{15}=0\)
\(\Rightarrow5y+9x-1=0\)
\(\Rightarrow\frac{y+4}{3}=-\frac{y-6x}{5}\)
\(\Rightarrow\frac{y+4}{3}-\left(-\frac{y-6x}{5}\right)=0\)
\(\Rightarrow\frac{2\left(4y-9x+10\right)}{15}=0\)
\(\Rightarrow2\left(4y-9x+10\right)=10\)
\(\Rightarrow4y-9x+10=0\)
=>\(y=-1\); \(x=\frac{2}{3}\)
\(\Leftrightarrow\frac{7-3x}{5}=\frac{y+4}{3}=\frac{6x-y}{5}\)
\(\Rightarrow\frac{-3x-7}{5}=\frac{y+4}{3}\)
\(\Rightarrow\frac{-y+4}{3}-\frac{3x-7}{5}=0\)
\(\Leftrightarrow\frac{-5y+9x-1}{15}=0\)<=>5y+9x-1=0
\(\Rightarrow\frac{y+4}{3}=\frac{-y-6x}{5}\)
\(\Rightarrow\frac{y+4}{3}-\left(\frac{-y-6x}{5}\right)=0\)
\(\Leftrightarrow\frac{2\left(4y-9x+10\right)}{15}=0\)
=>2(4y-9x+10)=0
=>4y-9x+10=0
=>x=\(\frac{2}{3}\);y=-1
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
1,x/7=y/3 va x-24=y
=>x/7=y/3 va x-y=24
adtcdts=n:
x/7=y/3=x-y/7-3=24/4=6
Suy ra :x/7=6=>x=6.742
y/3=6=>y=3.6=18
2,Adtcdts=n:
x/5=y/7=z/2=y-x/7-5=48/2=24
suy ra : x/5=24=>x=120
y/7=24=>y=168
z/2=24=>z=48
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
a)
\(\dfrac{1}{2}{x^2}.\dfrac{6}{5}{x^3} = \dfrac{1}{2}.\dfrac{6}{5}.{x^2}.{x^3} = \dfrac{3}{5}{x^5}\);
b)
\(\begin{array}{l}{y^2}(\dfrac{5}{7}{y^3} - 2{y^2} + 0,25) = {y^2}.\dfrac{5}{7}{y^3} - {y^2}.2{y^2} + {y^2}.0,25)\\ = \dfrac{5}{7}{y^5} - 2{y^4} + 0,25{y^2}\end{array}\);
c)
\(\begin{array}{l}(2{x^2} + x + 4)({x^2} - x - 1) \\= 2{x^2}({x^2} - x - 1) + x({x^2} - x - 1) + 4({x^2} - x - 1)\\ = 2{x^4} - 2{x^3} - 2{x^2} + {x^3} - {x^2} - x + 4{x^2} - 4x - 4 \\= 2{x^4} - {x^3} + {x^2} - 5x - 4\end{array}\);
d)
\(\begin{array}{l}(3x - 4)(2x + 1) - (x - 2)(6x + 3) \\= 3x(2x + 1) - 4(2x + 1) - x(6x + 3) + 2(6x + 3)\\ = 6{x^2} + 3x - 8x - 4 - 6{x^2} - 3x + 12x + 6\\ = 4x + 2\end{array}\).