Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x+m+1 =0
2x = - m -1
x =( -m-1)/2 >0
m < -1 ( khi nhân 2 vế của bđt với 1 số âm thì bđt đảo chiều)
b) x -1 -m2 =0
x = m2 +1 <0 ( vô nghĩa vì với mọi m thì m2 +1 luôn >0 )
Trl:
Công = 0 vì 2 lực tác dụng vào viên bi là trọng lực và lực đẩy của mặt sàn có phương thẳng đứng(vuông góc với mặt sàn) .Phương chuyển động của hòn bi nằm ngang cùng phương với mặt bàn => phương của lực tác dụng vuông góc với phương chuyển động.
Hok_tốt
a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)
Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)
b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)
Giả sử a<b, ta đặt b=a+k(k>0)
Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)
Chứng minh tương tự với a>b
ơi STN = số thứ nhất
STH = SỐ THỨ 2 NHÉ
STB = SỐ THỨ 3 NHA
= 1 nhé
Ta có:
11=1 => 1^0 = 1^1:1=1^0, do 1^1:1=1=> 1^0=1
Tương tự với cơ số 0,
0^1=0, 0^0=0^1:0=0:0, do 0;0 là số vô nghiệm nên 0^0 cũng vô nghiệm