Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bình và Minh đều viết đúng. Và Sơn rút ra hằng đẳng thức: A2-2AB+B2=(A-B)2=(B-A)2
\(=\left\{\left(2x+2\right)+\left(2x-2\right)\right\}^2\)2
\(=\left(4x\right)^2\)
\(=16x^2\)
3x2+3y2+4xy+2x-2y+2=0
=>2(x2+2xy+y2) + (x2+2x+1) + (y2-2y+1) = 0
=>2(x+y)2+(x+1)2+(y-1)2=0
Vì 2(x+y)2>= 0 với mọi x,y thuộc R
(x+1)2 >=0 với mọi x thuộc R
(y-1)2>=0 với mọi y thuộc R
=> Dấu bằng xảy ra <=> x+y=0 ; x+1=0; y-1=0
<=> x= (-1), y=1
Vậy x=(-1) ; y=1
Học tốt nha ;)
leftrightarrow (x+1)2+(y-1)2 +2(x+y)2=0
leftrightarrow\(\hept{\begin{cases}x=-1\\y=1\\x=-y\end{cases}}\)leftrightarrow\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Thay x=-1:y=1 vào bài là ok
a) \(x^2+6xy+9x^2=\left(x+3x\right)^2\)
b) \(\left(a-2b^2\right)^2=a^2-4ab^2+4b^4\)
c) \(\left(m+1\right)^2=m^2+2m+1\)
d) \(m^2-4n^4=\left(m+2n^2\right)\left(m-2n^2\right)\)
\(A=-x^2+6x-15\)
\(A=-x^2+2.3x-9-6\)
\(\Rightarrow-A=x^2-2.3x+9+6\)
\(-A=\left(x^2-2.3.x+3^2\right)+6\)
\(-A=\left(x-3\right)^2+6\)
\(\Rightarrow A=-\left(x-3\right)^2-6\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2-6\le-6\forall x\)
\(A=-6\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amax =-6\(\Leftrightarrow\)x=3
\(B=-2x^2+8x-15\)
\(-2B=4x^2-16x+30\)
\(-2B=\left[\left(2x\right)^2-2.2x.4+4^2\right]+14\)
\(-2B=\left(2x-4\right)^2+14\)
\(\Rightarrow B=-\frac{\left(2x-4\right)^2}{2}-7\)
Ta có: \(-\frac{\left(2x-4\right)^2}{2}\le0\forall x\)
Đến đây b làm tương tự như trên nhé.
Chúc b học tốt
a) \(A=-x^2+6x-15\)
\(-A=x^2-6x+15\)
\(-A=\left(x^2-6x+9\right)+6\)
\(-A=\left(x-3\right)^2+6\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge6\)
\(\Leftrightarrow A\le-6\)
Dấu "=" xảy ra khi :
\(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Max}=-6\Leftrightarrow x=3\)
(5a-3b+8c)(5a-3b-8c) = (5a-3b)^2 - 64c^2 = 25a^2 + 9b^2 - 30ab - 16(a^2 - b^2) = 9a^2 - 30ab + 25b^2 = (3a-5b)^2
=> dpcm