Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(\widehat{B}>\widehat{C}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
Do đo; ΔAHC=ΔDHC
c: Xét ΔACB và ΔDCB có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔACB=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
a: Xét ΔABC có ˆB>ˆCB^>C^
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
Do đo; ΔAHC=ΔDHC
c: Xét ΔACB và ΔDCB có
CA=CD
ˆACB=ˆDCBACB^=DCB^
CB chung
Do đó: ΔACB=ΔDCB
Suy ra: ˆBAC=ˆBDC=900
6
a. Do tam giác ABC là tam giác đều nên CB = CA. Lại do CB = CD nên CD = CA, hay tam giác ACD cân tại C.
Khi đó do CE là đường cao nên đồng thời là trung tuyến. Vậy thì E là trung điểm AD, hay AE = DE.
Do ^ACB là góc ngoài tại đỉnh C của tam giác ACD nên ^ACB=2^CAD⇒^CAD=30o.
Vậy thì ^BAD=90o, hay tam gíac ABD vuông tại A.
b) Ta thấy ^FAD=^FAC+^CAD=30o+30o=60o.
Lại thấy FE là đường trung tuyến đồng thời là đường cao nên tam giác AFD cân. Tóm lại tam giác AFD đều.
Do C là giao của 3 đường cao trong tam giác đều FAD nên đồng thời nó cũng là trọng tâm tam giác.
Bài 2:
gọi số tổ y tế được chia nhiều nhất là a ( a thuộc N sao )
Theo đề bài ta có :
24 chia hết cho a ; 208 chia hết cho a và a là lớn nhất
suy ra a là ƯCLN ( 24,208 )
24=2^3x3
208=2^4x13
ƯCLN ( 24,208 )= 2^3=8
suy ra a=8
mỗi tổ có :
24:8=3 ( bác sĩ )
208:8=26( y tá )
nam bac dong son con chua ro
hoi con cho may í
đã biết ung thư sao vẫn hút chứ
tk mik na