Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(x^3-\dfrac{1}{4}x=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
hay \(x\in\left\{0;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
b: \(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
=>x-5=0
hay x=5
c: \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
hay \(x\in\left\{0;-\sqrt{13};\sqrt{13}\right\}\)
d: \(x^2+2x-1=0\)
\(\Leftrightarrow x^2+2x+1=2\)
\(\Leftrightarrow\left(x+1\right)^2=2\)
hay \(x\in\left\{\sqrt{2}-1;-\sqrt{2}-1\right\}\)
bài 1
a(x+y)2-(x-y)2
=[(x+y)-(x-y)][(x+y)+(x-y)]
=(x+y-x+y)(x+y+x-y)
=2y.2x
b,(3x+1)2-(x+1)2
=[(3x+1)-(x+1)][(3x+1)+(x+1)]
=(3x+1-x-1)(3x+1+x+1)
=2x.(4x+2)
4x.(x+10
bài 2
x3-0,25x=0
=>x(x2-0,25)=0
=>x=0 hoặc x2-0,25=0
=> x=0 hoặc x=\(\pm0,5\)
4.a)n2(n+1)+2n(n+1)=(n+1)(n2+2n)=n(n+1)(n+2)
n,(n+1),(n+2) là ba số nguyên liên tiếp nên chia hết cho 2 và 3
\(\Rightarrow\)n(n+1)(n+2) chia hết cho 6
4 Chứng minh rằng:
a)\(n^2+\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
Ta có:
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Ta thấy n , n+1 và n+2 là ba số tự nhiên liên tiếp
=> n(n+1) (n+2)\(⋮\)6
=> đpcm
b)\(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
Ta có:
\(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]\)
\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=\left(2n-1\right).2\left(n-1\right).2n\)
\(=4n\left(2n-1\right)\left(n-1\right)\)
=>\(4n\left(2n-1\right)\left(n-1\right)⋮4\left(1\right)\)
Mà(2n-1)(n-1)=(n+n-1)(n-1)
=>\(\left(2n-1\right)\left(n-1\right)⋮2\left(2\right)\)
Từ (1) và (2)=> Đpcm
c)\(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
Câu hỏi của Ngoc An Pham - Toán lớp 8 | Học trực tuyến
Chúc bạn học tốt!^^
Tính nhanh :
a) 252 - 152 = (25 + 15)(25 - 15) = 40 . 10 = 400
b) 872 + 732 - 272 - 132 = (872 - 132) + (732 - 272)
= (87 + 13)(87 - 13) + (73 + 27)(73 - 27)
= 100 . 74 + 100 . 26 = 100 . (74 + 26) = 100 . 100 = 10000
Bài 1:
a)\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x\cdot2y=2\left(x+y\right)\)
b) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\\ =\left(4x+2\right)\cdot2x=4x\left(2x+1\right)\)
Bài 2:
a) \(25^2-15^2=\left(25-15\right)\left(25+15\right)=10\cdot40=400\)
b) \(87^2+73^2-27^2-13^2=\left(87^2-27^2\right)+\left(73^2-13^2\right)\\ =\left(87-27\right)\left(87+27\right)+\left(73-13\right)\left(73+13\right)\)
\(=60\cdot114+60\cdot86=60\cdot\left(114+86\right)=60\cdot200=12000\)
Bài 2:
a) \(x^3-0,25\cdot x=0\)
\(\Leftrightarrow x^2\left(x-0,25\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-0,25=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=0,25\end{array}\right.\)
b) \(x^2-10=-25\)
\(\Leftrightarrow x^2=-15\) (vô nghiệm0
c) \(4x^2-4x=-1\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
d) \(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
a/ \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
b/ \(\left(x-2\right)^3+\left(5-2x\right)^3=0\)
\(\Leftrightarrow\left(x-2+5-2x\right)\left[\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right]=0\)
\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4+2x^2-5x-4x+10+25-20x+4x^2\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(7x^2-33x+29\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x=0\\7x^2-33x+29=0\end{matrix}\right.\)
+) 3 - x = 0 => x = 3
+) \(7x^2-33x+29=0\)
\(\Leftrightarrow\left(\sqrt{7}x\right)^2-2\cdot\sqrt{7}x\cdot\dfrac{33\sqrt{7}}{14}+\dfrac{1089}{28}-\dfrac{277}{28}=0\)
\(\Leftrightarrow\left(\sqrt{7}x-\dfrac{33\sqrt{7}}{14}\right)^2=\dfrac{277}{28}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{7}x-\dfrac{33\sqrt{7}}{14}=\sqrt{\dfrac{277}{28}}\\\sqrt{7}x-\dfrac{33\sqrt{7}}{28}=-\sqrt{\dfrac{277}{28}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{33+\sqrt{277}}{14}\\x=\dfrac{33-\sqrt{277}}{14}\end{matrix}\right.\)
Thử lại thấy chỉ có x = 3 thỏa mãn
Vậy pt có 1 nghiệm x = 3
bài 2:
a/ \(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)=4\left(2n+2\right)=8\left(n+1\right)⋮8\left(đpcm\right)\)
b/ \(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6-n+6\right)\left(n+6+n-6\right)=12\cdot2n=24n⋮24\)
tiện bạn giải luôn giùm mih con này đc ko
tính nhanh
54^2+82^2-18^2-46
tìm x
4x^2-4x=-1
\(a,25^{n+1}-25^n=25^n\left(25-1\right)=25^{n-1}\cdot25\cdot24=25^{n-1}\cdot100\cdot6⋮100,\forall n\)
\(b,n^2\left(n-1\right)-2n\left(n-1\right)=n\left(n-1\right)\left(n-2\right)⋮6,\forall n\)(vì là 3 số nguyên liên tiếp)
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.24=25^{n-1}.6.4.25=25^{n-1}.6.100⋮100\forall n\in N\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=n^3-3n^2+2n=\left(n-2\right)\left(n-1\right)n\)
là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^2\left(n-1\right)-2n\left(n-1\right)⋮2.3=6\forall n\in Z\)
Bài 1 :
Theo giả thiết đã ra ta có :
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)=n\left(n+1\right)\left(n+2\right)\) .
\(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số nguyên liên tiếp nên luôn chia hết cho 6 .
Vì vậy \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n ( đpcm )
Bài 2 :
Câu a : \(25^2-15^2=\left(25-15\right)\left(25+15\right)=10.40=400\)
Câu b : \(87^2+73^2-27^2-13^2=\left(87^2-13^2\right)+\left(73^2-27^2\right)\)
\(=\left(87+13\right)\left(87-13\right)+\left(73+27\right)\left(73-27\right)=100.74+100.46\)
\(=100\left(74+46\right)=100.120=12000\)
Bài 3 :
Câu a :
\(x^3-0,25x=0\)
\(\Leftrightarrow x\left(x^2-0,25\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2-0,25\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(x=0\) và \(x=\dfrac{1}{2}\)
Câu b :
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
cảm ơn bạn