K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

bài 1

a(x+y)2-(x-y)2

=[(x+y)-(x-y)][(x+y)+(x-y)]

=(x+y-x+y)(x+y+x-y)

=2y.2x

b,(3x+1)2-(x+1)2

=[(3x+1)-(x+1)][(3x+1)+(x+1)]

=(3x+1-x-1)(3x+1+x+1)

=2x.(4x+2)

4x.(x+10

23 tháng 9 2017

bài 2

x3-0,25x=0

=>x(x2-0,25)=0

=>x=0 hoặc x2-0,25=0

=> x=0 hoặc x=\(\pm0,5\)

25 tháng 8 2021

bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được

8 tháng 9 2016

\(\text{Tìm x:}\)

\(a.x\left(x-1\right)-3x+3x=0\)

\(x\left(x-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

\(b.3x\left(x-2\right)+10-5x=0\)

\(3x^2-6x+10-5x=0\)

\(3x^2-11x+10=0\)

\(3x^2-11x=-10\)(bn xem lại đề nhé)

\(c.x^3-5x^2+x-5=0\)

\(x^3-5x^2+x=5\)

\(d.x^4-2x^3+10x^2-20x=0\)


 

8 tháng 9 2016

bài 1:phân tích thành phân tử

  a> x^2-6x-y^2+9

= (x-3)^2 -y^2

= (x-3 -y) (x-3+y)

b>x^2-xy-8x+8y

= x(x-y) - 8(x-y)

= (x-8) (x-y)

c>25-4x^2-4xy-y^2

= 5^2 - (2x + y)^2 

= (5 - 2x -y) (5 +2x+y) 

d>xy-xz-y+z

= x(y-z) - (y-z)

= (x-1) (y-z)

e>x^2-xz-yz+2xy+y^2

= (x+y)^2 - z(x+y)

= (x+y-z) (x+y)

g>x^2-4xy+4y^2-z^2-4zt-4t^2

= (x-2y)^2 - (z + 2t)^2 

= (x-2y -x-2t) (x-2y + z +2t)

bài 2:tìm X bt 

a>x.(x-1)-3x+3x=0

x (x-1) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy x=0 và x=1

b>3x.(x-2)+10-5x=0

3x(x-2) - 5 (x-2)=0

(3x-5) (x-2) =0

\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)

c>x^3-5x^2+x-5=0

x^2 (x-5) + (x-5) =0

(x^2 +1)(x-5) =0

\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)

Vậy x=5

d>x^4-2x^3+10x^2-20x=0

x^3 (x-2) + 10x(x-2) =0 

(x^3 + 10x) (x-2) =0

x(x^2 + 10) (x-2) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)

Vậy x=0 và x=2

14 tháng 11 2021

Bài 1:

\(a,=3x\left(3xy+5y-1\right)\\ b,=\left(z-2\right)\left(3z-5\right)\\ c,=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\\ d,=x^2-3x+5x-15=\left(x-3\right)\left(x+5\right)\)

Bài 2:

\(a,\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x+2-4x^2-12x=9\\ \Leftrightarrow4x^2+10x+7=0\\ \Leftrightarrow4\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow4\left(x+\dfrac{5}{6}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ c,\Leftrightarrow x^2-12x+36=0\\ \Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x=6\)

22 tháng 9 2019

Bạn tải ứng dụng PhotoMath về nha. Ứng dụng này sẽ giải toán số chi tiết

22 tháng 9 2019

a) \(x^3-4x^2-12x+27\)

\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

b) \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-4\right)\left(x-3\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)

b) \(6x-9-x^2=-\left(x-3\right)^2\)

8 tháng 10 2023

Bài 1.

\(a\Big) 9(4x+3)^2=16(3x-5)^2\\\Leftrightarrow 9[(4x)^2+2\cdot 4x\cdot3+3^2]=16[(3x)^2-2\cdot3x\cdot5+5^2]\\\Leftrightarrow9(16x^2+24x+9)=16(9x^2-30x+25)\\\Leftrightarrow 144x^2+216x+81=144x^2-480x+400\\\Leftrightarrow (144x^2-144x^2)+(216x+480x)=400-81\\\Leftrightarrow 696x=319\\\Leftrightarrow x=\dfrac{11}{24}\\Vậy:x=\dfrac{11}{24}\\---\)

\(b\Big)(x-3)^2=4x^2-20x+25\\\Leftrightarrow(x-3)^2=(2x)^2-2\cdot2x\cdot5+5^2\\\Leftrightarrow(x-3)^2=(2x-5)^2\\\Leftrightarrow (x-3)^2-(2x-5)^2=0\\\Leftrightarrow (x-3-2x+5)(x-3+2x-5)=0\\\Leftrightarrow (-x+2)(3x-8)=0\\\Leftrightarrow \left[\begin{array}{} -x+2=0\\ 3x-8=0 \end{array} \right.\\\Leftrightarrow \left[\begin{array}{} -x=-2\\ 3x=8 \end{array} \right.\\\Leftrightarrow \left[\begin{array}{} x=2\\ x=\dfrac{8}{3} \end{array} \right.\\Vậy:...\)

30 tháng 9 2016

sai đề thì sửa dùm mik nhé

1 tháng 10 2016

giúp mik bài này với

CẦN GẤP

12 tháng 9 2016

Tính nhanh : 

a) 252 - 152 = (25 + 15)(25 - 15) = 40 . 10 = 400

b) 872 + 732 - 272 - 132 = (872 - 132) + (732 - 272)

= (87 + 13)(87 - 13) + (73 + 27)(73 - 27)

= 100 . 74 + 100 . 26 = 100 . (74 + 26) = 100 . 100 = 10000

12 tháng 9 2016

Bài 1:

a)\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x\cdot2y=2\left(x+y\right)\)

b) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\\ =\left(4x+2\right)\cdot2x=4x\left(2x+1\right)\)

Bài 2:

a) \(25^2-15^2=\left(25-15\right)\left(25+15\right)=10\cdot40=400\)

b) \(87^2+73^2-27^2-13^2=\left(87^2-27^2\right)+\left(73^2-13^2\right)\\ =\left(87-27\right)\left(87+27\right)+\left(73-13\right)\left(73+13\right)\)

\(=60\cdot114+60\cdot86=60\cdot\left(114+86\right)=60\cdot200=12000\)

Bài 2:

a) \(x^3-0,25\cdot x=0\)

\(\Leftrightarrow x^2\left(x-0,25\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-0,25=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=0,25\end{array}\right.\)

b) \(x^2-10=-25\)

\(\Leftrightarrow x^2=-15\) (vô nghiệm0

c) \(4x^2-4x=-1\)

\(\Leftrightarrow4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

d) \(8x^3+12x^2+6x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^3=0\)

\(\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

28 tháng 7 2017

phân tích thành nhân tử: 

\(x^2-9=x^2-3^2=\left(x+3\right)\left(x-3\right)\)

\(4x^2-25=\left(2x\right)^2-5^2=\left(2x+5\right)\left(2x-5\right)\)

  

\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)

   

\(9x^2+6xy+y^2=\left(3x\right)^2+2\cdot3x\cdot1+y^2=\left(3x+y\right)^2\)

      

\(x^2+4y^2+4xy=x^2+2\cdot x\cdot2y+\left(2y\right)^2=\left(x+2y\right)^2\)

28 tháng 7 2017

a. \(x^3-0.25x=0\Rightarrow x\left(x^2-\frac{1}{4}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{1}{4}\end{cases}}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\end{cases}}\)=> \(x\in\left\{0;\frac{1}{2};\frac{-1}{2}\right\}\)

b, \(x^2-10x=-25\)\(\Rightarrow x^2-10x+25=0\)

 \(\Rightarrow\left(x-5\right)^2=0\Rightarrow x-5=0\Rightarrow x=5\)

a, \(x^2-9=x^2-3x+3x-9\)

\(=x\left(x-3\right)+3\left(x-3\right)=\left(x-3\right)\left(x+3\right)\)

b, \(4x^2-25=\left(2x\right)^2-5^2=\left(2x-5\right)\left(2x+5\right)\)

c, \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

d, \(9x^2+6xy+y^2=\left(3x\right)^2+2\left(3xy\right)+y^2\) \(=\left(3x+y\right)^2\)

e, \(6x-9-x^2=6x-18+9-x^2\) \(=6\left(x-3\right)-\left(x-3\right)\left(x+3\right)\)

\(=\left(x-3\right)\left(6-x-3\right)=\left(x-3\right)\left(3-x\right)\)

f, \(x^2+4y^2+4xy=x^2+2\left(2xy\right)+\left(2y\right)^2\)

\(\left(x+2y\right)^2\)

\(\)

10 tháng 9 2016

a) \(x^2-81=\left(x-9\right)\left(x+9\right)\)

b) \(4x^2-25=\left(2x-5\right)\left(2x+5\right)\)

c) \(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

d) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

e) \(6x-9-x^2=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\)

f) \(x^2-4x^2+4y^2+4xy=\left(x^2+4xy+4y^2\right)-4x^2=\left(x+2y\right)^2-4x^2\\ =\left(x+2y+2x\right)\left(x+2y-2x\right)=\left(3x+2y\right)\left(2y-x\right)\)

g) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)

h) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\\ =\left(4x+2\right)\cdot2x=4x\left(2x+1\right)\)