Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
Lời giải:
a.
$3n+2\vdots n-3$
$3(n-3)+11\vdots n-3$
$\Rightarrow 11\vdots n-3$
$\Rightarrow n-3\in\left\{1; -1; 11; -11\right\}$
$\Rightarrow n\in\left\{4; 2; 14; -8\right\}$
Vì $n$ tự nhiên nên $n\in\left\{4;2;14\right\}$
b.
$n^2+7n+9\vdots n+7$
$n(n+7)+9\vdots n+7$
$\Rightarrow 9\vdots n+7$
$\Rightarrow n+7\in\left\{1; -1; 3; -3; 9; -9\right\}$
$\Rightarrow n\in\left\{-6; -8; -4; -10; 2; -16\right\}$
Vì $n$ tự nhiên nên $n=2$
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)
a)
Vì ƯCLN ( 7 ; 8 ) = 1
=> n = B ( 8 ) hoặc n = ..., -8 , 0 , 8 , ....
Có nhiều số lắm, nên mik viết như vậy
b)
Vì 7 là số nguyên tố
=> n = - 7 ; - 1 ; 1 ; 7
c)
Ta có : Ư ( - 7 ) = -7 ; -1 ; 1 ; 7
=> n = -9 ; -3 ; -1 ; 5
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
a, Ta thấy: 3 n + 2 + 3 n = 3 n . 3 2 + 3 n
= 3 n 3 2 + 1 = 3 n . 10 chia hết cho 10
=> 3 n + 2 + 3 n chia hết cho 10, n ∈ N
b, 7 n + 4 - 7 n = 7 n . 7 4 - 7 n
7 n 7 4 - 1 = 7 n . 2400 chia hết cho 30
=> 7 n + 4 - 7 n chia hết cho 30, n ∈ N
\(x^2+7n+7⋮n+4\Leftrightarrow3n+7⋮n+4\Leftrightarrow5⋮n+4\)
\(\Leftrightarrow n+4\in\left\{-1;1;-5;5\right\}\Leftrightarrow n\in\left\{-5;-3;-9;1\right\}\)