K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)

hay \(n\in\left\{2;4;14\right\}\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:

a.

$3n+2\vdots n-3$

$3(n-3)+11\vdots n-3$

$\Rightarrow 11\vdots n-3$

$\Rightarrow n-3\in\left\{1; -1; 11; -11\right\}$

$\Rightarrow n\in\left\{4; 2; 14; -8\right\}$

Vì $n$ tự nhiên nên $n\in\left\{4;2;14\right\}$

b.

$n^2+7n+9\vdots n+7$

$n(n+7)+9\vdots n+7$

$\Rightarrow 9\vdots n+7$

$\Rightarrow n+7\in\left\{1; -1; 3; -3; 9; -9\right\}$

$\Rightarrow n\in\left\{-6; -8; -4; -10; 2; -16\right\}$

Vì $n$ tự nhiên nên $n=2$

30 tháng 11 2021

\(\Rightarrow n\left(n+7\right)+9⋮n+7\\ \Rightarrow n+7\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Rightarrow n=2\left(n\in N\right)\)

30 tháng 11 2021

\(\Leftrightarrow n+7=9\)

hay n=2

1 tháng 11 2018

a) ta có: 1 -3n chia hết cho 2n +1

=> 2 - 6n chia hết cho 2n +1

=> 5 - 3 - 6n chia hết cho 2n +1

5 - 3.(1+2n) chia hết cho 2n + 1

...

bn tự làm tiếp đk r

b) ta có: 2-7n chia hết cho 2n + 5

=> 4 - 14n chia hết cho 2n + 5

=> 39 - 35 - 14n chia hết cho 2n + 5

39 - 7.(5+2n) chia hết cho 2n +5

...

c) ta có: 4n + 9 chia hết cho 3n + 1

=> 12n + 27 chia hết cho 3n + 1

12n + 4+23 chia hét cho 3n + 1

4.(3n+1) + 23 chia hết cho 3n + 1

...

1 tháng 11 2018

d) ta có: n^2 + 2n + 7 chia hết cho n+2

=> n.(n+2) + 7 chia hết cho n + 2

....

e) ta có: n^2 + n + 1 chia hết cho n + 1

=> n.(n+1) + 1 chia hết cho n + 1

...

6 tháng 1 2018

a. \(2n+7⋮n+1\)

Mà \(n+1⋮n+1\)

\(\Leftrightarrow\hept{\begin{cases}2n+7⋮n+1\\2n+2⋮n+1\end{cases}}\)

\(\Leftrightarrow5⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(5\right)\)

Suy ra :

+) n + 1 = 1 => n = 0

+) n + 1 = 5 => n = 4

Vậy ........

23 tháng 11 2021

\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)

23 tháng 11 2021

a,( 1;5 )

b, ( 1; 2; 4)

c (1;3 )

1 tháng 11 2017

1.=> n+7-(n+2) chia hết cho n+2

=>n+7-n-2 chia hết cho n+2

=>5 chia hết cho n+2

=>n+2 thuộc Ư(5)=1;5

ta có bảng:

n+215
nloại 3   

Vậy n=3

MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ

4 tháng 11 2017

3.3n+15 chia hết cho n+1

=>3n+15-n+1 chia hết cho n+1

=>3n+15-3(n+1) chia hết cho n+1 

=>3n+15-3n-3 chia hết cho n+1 

=>12 chia hết cho n+1 

=>n+1 thuộc Ư(12)=1;2;3;4;6;12

ta có bảng:

n+1123412
n0123

11

Vậy n thuộc 0;1;2;3;11

17 tháng 5 2017

chỉ có 

n=2

trường hợp e sai 

18 tháng 5 2017

a) Ta có : \(\frac{n+4}{n-1}=\frac{\left(n-1\right)+5}{n-1}=\frac{n-1}{n-1}+\frac{5}{n-1}=1+\frac{5}{n-1}\)

Để \(n+4⋮n-1\Leftrightarrow\frac{5}{n-1}\in N\Leftrightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)

* Với n - 1 = -1 => n = -1 + 1 = 0 ( thỏa mãn )

* Với n - 1 = 1 => n = 1+ 1 = 2 ( thỏa mãn )

* Với n - 1 = -5 => n = -5 + 1 = -4 ( ko thỏa mãn )

* Với n - 1 = 5 => n = 5 + 1 = 6 ( thỏa mãn )

Vậy với n \(\in\)  { 0; 2; 6 } thì n + 4 \(⋮\)n - 1

Các bài còn lại bn làm tương tự như vậy

10 tháng 2 2017

a, Ta thấy:  3 n + 2 + 3 n = 3 n . 3 2 + 3 n

=  3 n 3 2 + 1 =  3 n . 10 chia hết cho 10

=>  3 n + 2 + 3 n  chia hết cho 10, nN

b,  7 n + 4 - 7 n = 7 n . 7 4 - 7 n

7 n 7 4 - 1 = 7 n . 2400 chia hết cho 30

=> 7 n + 4 - 7 n  chia hết cho 30, nN

a: 7n chia hết cho 3

mà 7 không chia hết cho 3

nên \(n⋮3\)

=>\(n=3k;k\in Z\)

b: \(-22⋮n\)

=>\(n\inƯ\left(-22\right)\)

=>\(n\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\)

c: \(-16⋮n-1\)

=>\(n-1\inƯ\left(-16\right)\)

=>\(n-1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

=>\(n\in\left\{2;0;3;-1;5;-3;9;-7;17;-15\right\}\)

d: \(n+19⋮18\)

=>\(n+1+18⋮18\)

=>\(n+1⋮18\)

=>\(n+1=18k\left(k\in Z\right)\)

=>\(n=18k-1\left(k\in Z\right)\)