Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)
Ta co: 2n-1 chia het cho 7 nen 2n-1+2 se chia 7 du 2
=> 2n+1 khong chia het cho 7
\(a,n^5-n=n.\left(n^4-1\right)=n.\left(n^2-1\right).\left(n^2+1\right)\)
\(=n.\left(n^2-1\right).\left(n^2-4+5\right)\)
\(=n.\left(n^2-1\right).\left(n^2-4\right)+5n.\left(n^2-1\right)\)
\(=n.\left(n-1\right).\left(n+1\right).\left(n-2\right).\left(n+2\right)+5n.\left(n-1\right).\left(n+1\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)
Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1=>(n-1).n.(n+1) chia hết cho 6
=>5.(n-1).n.(n+1) chia hết cho (5.6)=30 (1)
Vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5 và 6
Mà (5;6)=1=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 30 (2)
Từ (1);(2)=> (n-2).(n-1).n.(n+1).(n+2)+5(n-1).n.(n+1) chia hết cho 30
=>n5-n chia hết cho 30 (đpcm)
\(b,\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right).\left(n^2+n-1+1\right)\)
\(=\left(n^2+n-2\right).\left(n^2+n\right)=\left(n^2+2n-n-2\right).n.\left(n+1\right)\)
\(=\left[n\left(n+2\right)-\left(n+2\right)\right].n.\left(n+1\right)=\left(n+2\right)\left(n-1\right).n.\left(n+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp mà trong 4 số nguyên liên tiếp cũng có 3 số nguyên liên tiếp
=>(n-1).n.(n+1).(n+2) chia hết cho 3 (3)
Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp nên chia hết cho 8 (4)
Từ (3);(4);lại có (3;8)=1
=>(n-1).n.(n+1).(n+2) chia hết cho 24
=>(n2+n-1)2-1 chia hết cho 24 (đpcm)
Đặt A = (n^2 - 1)n^2(n^2 + 1)
* Vì A là tích của ba số tự nhiên liên tiếp nên A chia hết cho 3
** Vì A là tích của ba số tự nhiên liên tiếp nên A có ít nhất một số chẵn là n^2 => n chia hết cho 2 => n^2 chia hết cho 4 => A chia hết cho 4
Nếu n^2 - 1 chẵn thì n^2 + 1 cũng chẵn nên (n^2 - 1)(n^2 + 1) chia hết cho 4 => A chi hết cho 4
*** Nếu n chia hết cho 5 => n^2 chia hết cho 5 => A chia hết cho 5
Nếu n ko chia hết cho 5 => n^2 chia 5 dư 1,4
+ Nếu n^2 chia 5 dư 1 => n^2 - 1 chia hết cho 5 => A chia hết cho 5
+ Nếu n^2 chia 5 dư 4 => n^2 + 1 chia hết cho 5 => A chia hết cho 5
Vậy A chia hết cho 3,4,5
Mà (3,4,5) = 1 => A chia hết cho (3.4.5) = 60
Ta đc đpcm
Tim n voi so tu nhien,cmr
a,5n+2 + 26 . 5n + 82n+1 chia het cho 59
b,7 . 52n + 12 . 6n chia het cho 19