K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2023

Ta có: 

\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{15}{OA'}\left(1\right)\)

\(\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}=\dfrac{OF'}{OA'-OF'}=\dfrac{30}{OA'-30}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{15}{OA'}=\dfrac{30}{OA'-30}\)

\(\Leftrightarrow15\left(OA'-30\right)=30OA'\)

\(\Leftrightarrow15OA'-450=30OA'\)

\(\Leftrightarrow-450=30OA'-15OA'\)

\(\Leftrightarrow-450=15OA'\)

\(\Leftrightarrow OA'=\dfrac{-450}{15}=-30\left(cm\right)\)

Vậy khoảng cách từ ảnh đến thấu kính là: -30cm

a)Bạn tự vẽ hình nha!!!

b)Ảnh thật, ngược chiều và lớn hơn vật.

c)Khoảng cách từ ảnh đến thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{15}=\dfrac{1}{20}+\dfrac{1}{d'}\)

\(\Rightarrow d'=60cm\)

Độ cao ảnh: \(\dfrac{h}{h'}=\dfrac{d}{d'}\)

\(\Rightarrow\dfrac{1}{h'}=\dfrac{20}{60}\Rightarrow h'=3cm\)

13 tháng 5 2023

Khoảng cách từ ảnh đến thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{12}=\dfrac{1}{8}+\dfrac{1}{d'}\)

\(\Leftrightarrow d'=-24\left(cm\right)\)

Chiều cao của ảnh:

\(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow h'=\dfrac{d'.h}{d}=\dfrac{-24.1}{8}=-3\left(cm\right)\)

13 tháng 5 2023

chiều cao số âm=))

16 tháng 3 2023

\(\left(1\right)\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{OI}{A'B'}\) ( do \(OI=AB\) )

 mik nhầm á bạn

16 tháng 3 2023

a. Bạn tự vẽ ( ảnh ảo )

b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)

\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{OI}{OA'}\)  ( do OI = OA )   (1)

Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)

\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\)  (2)

\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
             \(\Leftrightarrow\dfrac{5}{OA'}=\dfrac{8}{OA'+8}\)

             \(\Leftrightarrow OA'=\dfrac{40}{3}\left(cm\right)\)

Thế \(OA'=\dfrac{40}{3}\) vào \(\left(1\right)\Leftrightarrow\dfrac{2}{A'B'}=5:\dfrac{40}{3}\)

                                    \(\Leftrightarrow A'B'=\dfrac{16}{3}\left(cm\right)\)