Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=-8m/s^2\) và pha dao động \(\varphi=\dfrac{\pi}{4}\)
\(\omega=2\pi f=2\pi\cdot2=4\pi\)
Mà \(a=-\omega^2Acos\varphi\) nên \(-8=-\left(4\pi\right)^2\cdot Acos\dfrac{\pi}{4}\)
\(\Rightarrow A=\dfrac{-8}{-4^2\cdot10\cdot\dfrac{\sqrt{2}}{2}}=\dfrac{\sqrt{2}}{20}\left(m\right)\approx7,1cm\)
Để tính giá trị của t, ta sử dụng công thức:
t = φ / ω
Trong đó:
t là thời gian tính từ lúc con lắc bắt đầu dao động.φ là pha ban đầu của dao động.ω là tần số góc của dao động.Theo đề bài, tần số góc ω = 5π rad/s và pha ban đầu φ = -π/3 rad. Thay vào công thức trên, ta có:
t = (-π/3) / (5π) = -1/15 s
Tuy nhiên, thời gian không thể có giá trị âm, vì vậy giá trị của t là 1/15 s.
Làm tương tự bài này Câu hỏi của Nguyễn Lê Quỳnh Anh - Vật lý lớp 12 | Học trực tuyến
Giải:
\(A=\sqrt{x^2+\left(\dfrac{\upsilon}{\omega}\right)^2}=5\left(cm\right)\)
\(t=0\Rightarrow\left\{{}\begin{matrix}x=5\cos\left(\varphi\right)=0\\\upsilon=-\omega.A\sin\left(\varphi\right)< 0\end{matrix}\right.\) \(\Rightarrow\varphi=\dfrac{\pi}{2}\)
Vậy ta chọn \(C.5\cos\left(10t+\dfrac{\pi}{2}\right)cm\)
Câu 12. Một vật dao động điều hòa khi vật đi qua vị trí x = 3 cm vật đạt vận tốc 40 cm/s, biết rằng tần số góc của dao động là 10 rad/s. Viết phương trình dao động của vật? Biết gốc thời gian là lúc vật đi qua vị trí cân bằng theo chiều âm, gốc tọa độ tại vị trí cân bằng.
A. 3cos(10t + π/2) cm
B. 5cos(10t - π/2) cm
C. 5cos(10t + π/2) cm
D. 3cos(10t + π/2) cm
Tham khảo:
\(v=-\omega Acos\left(\omega t+\varphi\right)\)
\(\Rightarrow-60=-\omega\cdot6\cdot cos\left(\omega t+\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow-60=-\dfrac{\varphi}{t}\cdot6\cdot cos\left(\dfrac{\varphi}{t}\cdot t+\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow-60=-\dfrac{\pi}{6}\cdot\dfrac{1}{t}\cdot6\cdot cos\left(\dfrac{\pi}{6}\cdot\dfrac{1}{t}\cdot t+\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow-60=-\dfrac{\pi}{6}\cdot\dfrac{1}{t}\cdot6\cdot cos\left(\dfrac{\pi}{6}+\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{120}{\pi}\Leftrightarrow t=\dfrac{\pi}{120}\left(s\right)\)
Mà: \(\omega=\dfrac{\varphi}{t}=\dfrac{\dfrac{\pi}{6}}{\dfrac{\pi}{120}}=\dfrac{120}{6}=20\left(rad/s\right)\)
Chu kì của dao động là:
\(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{20}=\dfrac{\pi}{10}\left(s\right)\)
\(\omega=\dfrac{2\pi}{T}=\dfrac{2\pi}{3,14}=...\left(rad/s\right)\)
\(A^2=x^2+\dfrac{v^2}{\omega^2}\Rightarrow A=...\left(cm\right)\)
\(\Rightarrow\dfrac{x}{A}=\dfrac{2}{A}\Rightarrow x=...A\)
\(\Rightarrow\cos\varphi=\dfrac{x}{A}\Rightarrow\varphi=...\left(rad\right)\)
thông cảm máy tính ko có ở đây nên bạn tự tính nhé, có gì ko hiểu hỏi tui
\(A^2=x^2+\dfrac{v^2}{\left(\omega^2\right)}=8\Rightarrow A=2\sqrt{2}\Rightarrow x=Acos\left(\varphi t\right)\Rightarrow cos\left(\varphi t\right)=\dfrac{x}{A}=\dfrac{\sqrt{2}}{2}\Rightarrow\varphi t=\dfrac{-\pi}{4}\)