\(x=5\cos(2\pi t-\frac \pi 6)(cm)\). Tốc độ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2015

Tốc độ trung bình của vật là \(v = \frac{\text{quãng đường đi được}}{t}\)

Quãng đường đi được trong 1 chu kỳ là: \(S = 4A = 20cm.\)

Vận tốc trung bình là \(v = \frac{4A}{T} = \frac{20}{2\pi/2\pi} = 20cm/s.\)

Chọn đáp án. B

26 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

+ Tần số góc: \(\omega = \frac{2\pi}{T}=\frac{2\pi}{2} = \pi\) (rad/s)
+ Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{31,4}{\pi} = 10 \ (cm)\)
+ t = 0 \(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\) \(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{5}{10}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Phương trình dao động: \(x=10\cos(\pi t + \frac{\pi}{3})\) (cm)
 
30 tháng 9 2015

Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)

+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)

+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)

19 tháng 5 2018

tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???

28 tháng 8 2015

Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)

+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.

+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)

+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)

Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)

 

29 tháng 8 2015

Phương trình tổng quát: x = \(A\cos(\omega t+\varphi)\)

+ Tần số: f= 120/60 = 2 Hz \(\Rightarrow \omega = 2\pi f = 2\pi .2 = 4\pi\) (rad/s)

+ Biên độ: A = 40/4 = 10 (cm) (1 chu kì vật đi quãng đường là 4A)

t=0, vật có li độ dương, chiều hướng về VTCB, nên v0<0.

\(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 5/10=0,5\ \\ \sin \varphi > 0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Vậy phương trình: \(x=10\cos(4\pi t +\frac{\pi}{3})\)

29 tháng 5 2018

Giải thích chỗ cách tính Biên độ A cho em với ạ

O
ongtho
Giáo viên
8 tháng 10 2015

Áp dụng: \(A^2 = x^2 + \frac{v^2}{\omega^2} \Rightarrow v = \pm\omega\sqrt{A^2-x^2}\),

Thay số, ta được v = \(\pm\) 25,12 cm/s.

7 tháng 6 2017

sai rồi ạ, bạn chưa xem pha ban đầu Pi/3

27 tháng 10 2015

Tốc độ trung bình của vật là \(v = \frac{\text{quãng đường đi được}}{t}\)

(chú ý là tốc độ trung bình khác với vận tốc trung bình vì vận tốc trung bình = \(\frac{x_{cuoi}-x_{dau}}{t}\))

Dùng đường tròn để tìm quãng đường và thời gian đi

4 -4 2 3 2 3 - M N a π/6 π/6 H K

Vật đi được từ điểm N (\(x = -2\sqrt{3}\) hường theo chiều dương của trục x) đến điểm M (\(x = 2\sqrt{3}\) hướng theo chiều dương của trục x) tức là ứng với cung \(\stackrel\frown{NaM}\)

Quãng đường đi được là: \(S = HK= 2\sqrt{3}+ 2\sqrt{3} = 4\sqrt{3}cm.\)

Thời gian đi \(t = \frac{\varphi}{\omega} = \frac{\pi/3+\pi/3}{8\pi} = \frac{1}{12}s.\)

Vận tốc trung bình là \(v = \frac{4\sqrt{3}}{1/12} = 48 \sqrt{3}cm/s.\)

Chọn đáp án. D

12 tháng 4 2020

Làm sao biết được là pi/6 vậy ạ. C chỉ giúp mình được không ạ?

21 tháng 9 2020
https://i.imgur.com/D9p6PNf.jpg
22 tháng 9 2020

Combo 3 câu :)

4/ \(f=5Hz\Rightarrow\omega=10\pi\left(rad/s\right)\)

\(A^2=x^2+\frac{v^2}{\omega^2}\Leftrightarrow A=\sqrt{\left(2\sqrt{3}\right)^2+\frac{20^2\pi^2}{10^2\pi^2}}=4\left(cm\right)\)

\(2\sqrt{3}=4\cos\varphi\Rightarrow\varphi=\pm\frac{\pi}{6}\)

\(v=-20\pi< 0\Rightarrow\varphi>0\Rightarrow\varphi=\frac{\pi}{6}\)

\(\Rightarrow x=4\cos\left(10\pi t+\frac{\pi}{6}\right)\)

5/ \(A^2=\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}\Rightarrow A=\sqrt{\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}}=...\)

6/ Áp dụng công thức ở câu 5

8 tháng 10 2015

Áp dụng: \(a = -\omega^2 x =-(2\pi)^2.3 = - 120\ cm/s^2 \)

2 tháng 10 2015

Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)

t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)