K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

Do gia tốc a vuông pha với vận tốc v, nên ta có: \((\frac{a}{a_{max}})^2+(\frac{v}{v_{max}})^2 =1\)  \(\Rightarrow (\frac{a}{\omega^2 A})^2+(\frac{v}{\omega A})^2=1\) \(\Rightarrow \frac{v^2}{\omega ^2}+\frac{a^2}{\omega ^4} = A^2\)

24 tháng 9 2023

Câu 19:

\(\left(\dfrac{x}{A}\right)^2+\left(\dfrac{\upsilon}{\omega A}\right)^2=1\\ \Leftrightarrow\left(\dfrac{0,5A}{A}\right)^2+\left(\dfrac{v}{\omega A}\right)^2=1\\ \Rightarrow\upsilon=\dfrac{\omega A\sqrt{3}}{2}\)

Chọn B

24 tháng 9 2023

Câu 21:

Có:

 \(\upsilon=\omega\sqrt{A^2-x^2}\\ \Leftrightarrow31,4=\omega\sqrt{2^2-1^2}\\ \Leftrightarrow\omega\approx18,13\left(\dfrac{rad}{s}\right)\)

\(T=\dfrac{2\pi}{\omega}\approx0,346\left(s\right)\)

Chọn D

30 tháng 10 2015

Đoạn mạch chỉ có cuộn cảm thuần thì i trễ pha \(\frac{\pi}{2}\)so với u.

\(I_0=\frac{U_0}{Z_L}=\frac{U_0}{\omega L}\)

Suy ra \(i=\frac{U_0}{\omega L}\cos\left(\omega t-\frac{\pi}{2}\right)\)

30 tháng 10 2015

chọn C

 

31 tháng 5 2019

\(\varphi=\varphi_u-\varphi_i=0-\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}\)

\(\tan\varphi=\frac{Z_L-Z_C}{R}=1\Rightarrow Z_L-Z_C=R\)

\(\Rightarrow Z=\sqrt{R^2+\left(Z_L-Z_C\right)^2}=R\sqrt{2}\)

\(Z=\frac{U}{I}=\frac{200}{2}=100\Rightarrow R=\frac{100}{\sqrt{2}}=50\sqrt{2}\)

19 tháng 1 2018

C

23 tháng 8 2016

Cơ năng:

\(W=\dfrac{1}{2}m.v_{max}^2=0,5.m.(\omega.A)^2=0,5.m\omega^2A^2\)

Chọn A.

22 tháng 6 2019

\(\dfrac{x^2}{A^2}+\dfrac{v^2}{\omega^2A^2}=1\)

\(\dfrac{1}{4}+\dfrac{v^2}{\omega^2A^2}=1\)

\(\dfrac{v^2}{\omega^2A^2}=\dfrac{3}{4}\)

=>v=\(\dfrac{\sqrt{3}}{2}\)ωA

14 tháng 6 2018

Áp dụng định lý hàm sin ta có:

\(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\) = \(\dfrac{Á_2}{sina}\) = \(\dfrac{A_3}{sinb}\)

⇒ A2 = \(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\)sina

Để A2 đạt giá trị lớn nhất, góc a bằng 90o, suy ra góc b bằng 60o

nên A1 = \(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\).sin60 = \(\dfrac{7,5}{\dfrac{sin\pi}{3}}\)

1 tháng 2 2017

*) Từ hai biểu thức dòng điện, rút ra 2 kết luận sau: khi \(\omega\) thay đổi thì

+) I cực đại tăng \(\frac{I_2}{I_1}=\sqrt{\frac{3}{2}}\Rightarrow \frac{Z_1}{Z_2}=\sqrt{\frac{3}{2}}\)

+) Pha ban đầu của i giảm 1 góc bằng: \(\frac{\pi}{3}-\left(-\frac{\pi}{12}\right)=\frac{5\pi}{12}=75^0\)

tức là hai véc tơ biểu diễn Z1 và Z2 lệch nhau 75 độ, trong đó Z2 ở vị trí cao hơn

*) Dựng giản đồ véc-tơ:

Z1 Z2 O A B H R

Trong đó: \(\widehat{AOB}=75^0\);

Đặt ngay: \(Z_1=OB=\sqrt{\frac{3}{2}}\Rightarrow Z_2=1\)

Xét tam giác OAB có \(\widehat{AOB}=75^0;OA=1;OB=\sqrt{\frac{3}{2}}\) và đường cao OH.

Với trình độ của bạn thì thừa sức tính ngay được: \(OH=\frac{\sqrt{3}}{2}\)

\(\Rightarrow R=OH=\frac{\sqrt{3}}{2}\)

*) Tính \(Z_L,Z_C\):

\(Z_1^2=R^2+\left(Z_L-Z_C\right)^2;\left(Z_L< Z_C\right)\)

\(Z_2^2=R^2+\left(\sqrt{3}Z_L-\frac{Z_C}{\sqrt{3}}\right)^2\)

Thay số vào rồi giải hệ 2 ẩn bậc nhất, tìm được: \(Z_L=\frac{\sqrt{3}}{2};Z_C=\sqrt{3}\)

*) Tính

\(\frac{R^2L}{C}=\frac{R^2\cdot\left(L\omega_1\right)}{C\omega_1}=R^2Z_LZ_C\\ =\left(\frac{\sqrt{3}}{2}\right)^2\cdot\frac{\sqrt{3}}{2}\cdot\sqrt{3}=\frac{9}{4}\)

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Ra $\frac{1}{2}$ ông ạ

Thầy tôi bảo có cách dùng giản đồ vector ngắn kinh khủng mà chưa ngộ ra.