Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm được độ dài các cạnh của tam giác lần lượt là:
6 cm, 8 cm, 10 cm.
Gọi a,b,c là độ dài 3 cạnh của tam giác đó
Theo đề ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}\)
Đặt: \(\dfrac{a}{3}=\dfrac{b}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
Tam giác vuông. Áp dụng định lí Pitago ta có:
a2 + b2 = c2
=> (3k)2 + (4k)2 = c2
=> 9k2 + 16k2 = c2
=> 25k2 = c2
=> c = 5k
Theo đề ta có:
a + b + c = 24
=> 3k + 4k + 5k = 24
=> 12k = 24
=> k = 2
Mà: \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3.2=6\left(cm\right)\\b=4.2=8\left(cm\right)\\c=5.2=10\left(cm\right)\end{matrix}\right.\)
Vậy: Độ dài 3 cạnh của tam giác đó là 6, 8, 10
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó
5k +12k + 13k = 30 => k = 1.
Từ đó độ dài cạnh huyền là 13 cm.
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 3k và 4k với k>0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 5k, do đó 5k = 20
=> k = 4.
Từ đó độ dài các cạnh góc vuông lần lượt là 12 cm và 16 cm.
Gọi AB(cm),AC là hai cạnh góc vuông, BC(cm) là cạnh huyền(Điều kiện: AB>0; AC>0)
Theo đề, ta có: AB:AC=3:4 và BC=45(cm)
\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\)
hay \(AB=\dfrac{3}{4}\cdot AC\)
Áp dụng định lí Pytago, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\left(\dfrac{3}{4}\cdot AC\right)^2+AC^2=45^2\)
\(\Leftrightarrow\dfrac{9}{16}\cdot AC^2+AC^2=45^2=2025\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=2025\)
\(\Leftrightarrow AC^2=2025:\dfrac{25}{16}=2025\cdot\dfrac{16}{25}=1296\)
hay AC=36(Thỏa ĐK)
Ta có: \(AB=\dfrac{3}{4}\cdot AC\)(cmt)
mà AC=36cm(cmt)
nên \(AB=\dfrac{3}{4}\cdot36=27\left(nhận\right)\)
Vậy: Độ dài hai cạnh góc vuông là 27cm; 36cm
gọi độ dài 2 cạnh góc vuông đó là A,B(A,B>0)
VÌ 2 CẠNH GÓC VUÔNG TỈ LỆ VỚI 3,4 =>\(\frac{A}{3}\) =\(\frac{B}{4}\)
VÌ CẠNH HUYỀN ĐÓ BẰNG 45 CM =>A+B=45
ÁP DỤNG ĐỊNH LÝ DTSBN TA CÓ
\(\frac{A}{3}\) = \(\frac{B}{4}\)=...........
Gọi hai cạnh góc vuông cần tìm là AB,AC và cạnh huyền là BC(Điều kiện: AB>0; AC>0; BC>0)
Theo đề, ta có: AB:AC=3:4 và AB+AC+BC=24(cm)
⇔\(\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\)
Đặt \(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=\left(3k\right)^2+\left(4k\right)^2=25k^2\)
hay BC=5k
Ta có: AB+AC+BC=24cm(gt)
\(\Leftrightarrow3k+5k+4k=24\)
\(\Leftrightarrow12k=24\)
hay k=2
⇔AB=6cm; AC=8cm
Vậy: Độ dài hai cạnh góc vuông cần tìm là 6cm và 8cm
Tìm được độ dài các cạnh của tam giác lần lượt là:
6 cm, 8 cm, 10 cm.