K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

aiiiii quannnnnnnnnnnn tâmmmmmmmmmmmmmmmm

21 tháng 12 2016

Gọi số đó là a (a thuộc N)

Tổng các chữ số của nó là n (n thuộc N)

Do a chia hết cho 3 lần tổng các chữ số của nó nên a = 3n.k (k thuộc N)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 => a - n = 3n.k - n chia hết cho 9 (1)

Mà 3n.k chia hết cho 3, từ (1) n chia hết cho 3

=> n = 3.x (x thuộc N)

=> a = 3n.k = 3.3.x.k = 9.x.k chia hết cho 9

Từ (1) => n chia hết cho 9

=> n = 9.y (y thuộc N)

=> a = 3n.k = 3.9.y.k = 27.y.k, là bội của 27 (đpcm)

21 tháng 12 2016

Pài này mk cx cần nữa , giúp zới

Ah Tuấn ơi

Nguyễn Huy Tú , cj Linh , cj Ngọc , Lê Nguyên Hạo , Silver bullet , soyeon_Tiểubàng giải , .... Ai giúp đc thì giúp vs khocroi

22 tháng 10 2023
  1. Để chứng minh rằng số m cũng là một bội số của 121, ta cần chứng minh rằng (16a+17b)(17a+16b) chia hết cho 11 và 121.

Đầu tiên, chúng ta xét xem (16a+17b)(17a+16b) chia hết cho 11 hay không. Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.

Vì 11 là một số nguyên tố, nên theo tính chất của phép nhân, để m là một bội số của 11, thì mỗi thành phần của m cũng phải là một bội số của 11.

Ta thấy rằng 272a^2 và 272b^2 đều chia hết cho 11, vì 272 chia hết cho 11. Vì vậy, ta chỉ cần chứng minh rằng 528ab chia hết cho 11 để kết luận m là một bội số của 11.

Để chứng minh điều này, ta sử dụng tính chất căn bậc hai modulo 11. Ta biết rằng căn bậc hai của 11 là 5 hoặc -5 (vì 5^2 = 25 ≡ 3 (mod 11)). Vì vậy, ta có:

(16a+17b)(17a+16b) ≡ (5a+6b)(6a+5b) (mod 11).

Mở ngoặc, ta được:

(5a+6b)(6a+5b) ≡ 30ab + 30ab ≡ 60ab ≡ 6ab (mod 11).

Vì 6 không chia hết cho 11, nên 6ab cũng không chia hết cho 11. Do đó, ta kết luận rằng 528ab không chia hết cho 11 và m là một bội số của 11.

Tiếp theo, chúng ta cần chứng minh rằng m là một bội số của 121. Để làm điều này, ta cần chứng minh rằng m chia hết cho 121.

Một cách để chứng minh rằng m chia hết cho 121 là tìm một số tự nhiên k sao cho m = 121k. Để làm điều này, chúng ta cần tìm một số tự nhiên k sao cho (16a+17b)(17a+16b) = 121k.

Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.

Chúng ta đã chứng minh rằng m là một bội số của 11, vậy m = 11m' với m' là một số tự nhiên.

Thay thế m vào công thức m = 272a^2 + 528ab + 272b^2, ta có:

11m' = 272a^2 + 528ab + 272b^2.

Chia cả hai vế của phương trình cho 11, ta có:

m' = 24a^2 + 48ab + 24b^2.

Như vậy, m' là một số tự nhiên. Điều này cho thấy rằng m chia hết cho 121 và m là một bội số của 121.

  1. Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, chúng ta cần tìm tổng của tất cả các số tự nhiên từ 10 đến 99 không chia hết cho 3 và 5.

Để tính tổng này, chúng ta có thể sử dụng công thức tổng của một dãy số từ một số đến một số khác. Công thức này là:

Tổng = (Số lượng số trong dãy) * (Tổng của số đầu tiên và số cuối cùng) / 2,

trong đó, Số lượng số trong dãy = (Số cuối cùng - Số đầu tiên) + 1.

Áp dụng công thức này vào bài toán, ta có:

Số đầu tiên = 10, Số cuối cùng = 99, Số lượng số trong dãy = (99 - 10) + 1 = 90.

Tổng = 90 * (10 + 99) / 2 = 90 * 109 / 2 = 90 * 54,5 = 4.905.

Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 4.905.

22 tháng 10 2023

Bài toán 1: Để chứng minh số m cũng là một bội số của 121, ta sẽ sử dụng một số tính chất của phép chia.

Ta có: m = (16a + 17b)(17a + 16b) = (17a + 16b)^2 - (ab)^2

Vì m là một bội số của 11, nên ta có thể viết m dưới dạng m = 11k, với k là một số tự nhiên.

Từ đó, ta có (17a + 16b)^2 - (ab)^2 = 11k.

Áp dụng công thức (a + b)^2 - (ab)^2 = (a - b)^2, ta có (17a + 16b + ab)(17a + 16b - ab) = 11k.

Ta có thể chia hai trường hợp để xét:

Trường hợp 1: (17a + 16b + ab) chia hết cho 11. Trường hợp 2: (17a + 16b - ab) chia hết cho 11.

Trong cả hai trường hợp trên, ta đều có một số tự nhiên tương ứng với mỗi trường hợp.

Do đó, nếu m là một bội số của 11, thì m cũng là một bội số của 121.

Bài toán 2: Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, ta cần xác định tập hợp các số thỏa mãn điều kiện trên và tính tổng của chúng.

Các số tự nhiên hai chữ số không chia hết cho 3 và 5 có dạng AB, trong đó A và B lần lượt là các chữ số từ 1 đến 9.

Ta thấy rằng có 3 chữ số (3, 6, 9) chia hết cho 3 và 2 chữ số (5, 0) chia hết cho 5. Vì vậy, số các chữ số không chia hết cho 3 và 5 là 9 - 3 - 2 = 4.

Do đó, mỗi chữ số A có 4 cách chọn và mỗi chữ số B cũng có 4 cách chọn.

Tổng tất cả các số có hai chữ số không chia hết cho 3 và 5 là 4 x (1 + 2 + 3 + ... + 9) x 4 = 4 x 45 x 4 = 720.

Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 720.

27 tháng 12 2016

Gọi số bị chia cho 7 là a .

Giả sử a là 777 , thì a chia hết cho 7 ; 7 + 7 + 7 = 21 chia hết cho 7 .

Nếu bạn nào thấy đúng , nhớ k cho mình nha !

15 tháng 8 2018

Cho số tự nhiên chia hết cho 7 có 3 chữ số trong đó chữ số hàng chục bằng chữ số hàng đơn vị . Chứng minh rằng tổng các chữ số của nó chia hết cho 7

19 tháng 10 2019

Câu hỏi của Hoàng Hoàng Long⁀ᶦᵈᵒᶫ⁀2k8 - Toán lớp 6 - Học toán với OnlineMath

19 tháng 10 2019

Số tự nhiên có 3 chữ số mà chữ số hàng chục bằng chữ số hàng đơn vị là: \(\overline{abb}\)( a khác 0, a,b,c là số tự nhiên có 1 chữ số)

\(\overline{abb}=a.100+b.10+b=a.100+b.11=98a+2a+7b+4b\)

\(=\left(98a+7b\right)+\left(2a+4b\right)=7\left(14a+7\right)+2\left(a+2b\right)\)

Theo bài ra : \(\overline{abb}\) chia hết cho 7 mà \(7\left(14a+7\right)⋮7\)

=> \(2\left(a+2b\right)⋮7\)=> \(a+2b⋮7\)=> a + b + b chia hết cho 7

Vậy tổng các chữ số \(\overline{abb}\) chia hết cho 7.

19 tháng 10 2019

Em cảm ơn chị nhiều !

11 tháng 9 2019

Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath