Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc của ô tô là x , thời gian dự định là y ( x(km/h), y(giờ) ; x, y > 0 )
S ban đầu = xy
Tăng vận tốc thêm 10km/h thì đến sớm hơn dự định 2 giờ
=> S = ( x + 10 )( y - 2 )
Giảm vận tộc đi 10km/h thì đến chậm hơn dự định 3 giờ
=> S = ( x - 10 )( y + 3 )
Vì quãng đường AB không đổi
=> Từ ( 1 ) và ( 2 ) ta có phương trình :
\(\hept{\begin{cases}\left(x+10\right)\left(y-2\right)=xy\\\left(x-10\right)\left(y+3\right)=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+10y-xy-20=0\\xy+3x-10y-xy-30=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2x+10y-20=0\left(3\right)\\3x-10y-30=0\left(4\right)\end{cases}}\)
Lấy ( 3 ) cộng ( 4 ) theo vế
\(\Rightarrow x-50=0\Leftrightarrow x=50\)
Thế x = 50 vào ( 3 )
\(\Rightarrow-2\cdot50+10y-20=0\)
\(\Rightarrow-120+10y=0\)
\(\Rightarrow10y=1200\Leftrightarrow y=12\)
Cả hai giá trị đều thỏa mãn điều kiện
=> ( x ; y ) = ( 50 ; 12 )
Vậy vận tốc ban đầu của ô tô = 50km/h và thời gian dự định = 12 giờ
=> Quãng đường AB dài : 50 . 12 = 600km
Trả lời:
Gọi vân tốc dự định của ô tô là:\(x\)\(\left(km/h,x>10\right)\)
thời gian dự định ô tô đi quãng đường AB là \(y\) \(\left(giờ,y>2\right)\)
Độ dài quãng đường AB là \(xy\left(km\right)\)
.Nếu tăng vận tốc thêm 10km/h thì đến B sớm hơn dự định 2 giờ
\(\Rightarrow\left(x+10\right).\left(y-2\right)=xy\)
\(\Leftrightarrow xy-2x+10y-20=xy\)
\(\Leftrightarrow-2x+10y=20\)(1)
Nếu giảm vận tốc 10km/h thì đến B chậm hơn dự định 3 giờ
\(\Rightarrow\left(x-10\right).\left(y+3\right)=xy\)
\(\Leftrightarrow xy+3x-10y-30=xy\)
\(\Leftrightarrow3x-10y=30\)(2)
Từ (1) (2) ta có: \(\hept{\begin{cases}-2x+10y=20\\3x-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\3.50-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\150-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\10y=120\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\y=12\left(TM\right)\end{cases}}\)
Vậy quãng đường AB dài: \(50\times12=600\left(km\right)\)
Tham khảo :
Gọi quãng đường AB là x ( đk x > 0 )
Nếu xe chạy với vận tốc 40km/h thì thời gian xe chạy hết quãng đường AB là : \(\frac{x}{40}\)
\(\Rightarrow\)thời gian dự định là : \(\frac{x}{40}-\frac{1}{2}\)( giờ )
Nếu xe chạy với vận tốc 50km/h thì thioiwf gian xe chạy hết quãng đường AB là : \(\frac{x}{50}\)
\(\Rightarrow\)thời gian dự định là : \(\frac{x}{50}+\frac{2}{5}\)(giờ)
Vì thời gian dự định không đổi nên ta có phương trình :
\(\frac{x}{40}-\frac{1}{2}=\frac{x}{50}+\frac{2}{5}\)(1)
Giải phương trình (1) , ta có :
phương trình (1) \(\Leftrightarrow\frac{5x}{200}-\frac{100}{200}=\frac{4x}{200}+\frac{80}{200}\)
\(\Rightarrow5x-100=4x+80\)
\(\Rightarrow x=180\)\(\left(tm\right)\)
Vậy quãng đường AB dài 180km
Gọi độ dài quãng đường AB là \(x ( k m ) \)
ĐK: `x>0`
Thời gian dự định đi là \(t ( h ) , t > 0 \)
Thời gian đi với vận tốc `40km//h` là :`x/40` giờ
Vì đến muộn hơn `30` phút `=1/2` giờ , nên ta có :
\(\dfrac{x}{40}=t+\dfrac{1}{2}\rightarrow t=\dfrac{x}{40}-\dfrac{1}{2}\) giờ `(1)`
Thời gian đi với vận tốc `50km//h` là:`x/50` giờ
Vì đến sớm hơn `24` phút `=2/5` giờ , nên ta có:
\(\dfrac{x}{50}+\dfrac{2}{5}=t\left(2\right)\)
Từ `(1)` và `(2)` suy ra:
\(\dfrac{x}{40}+\dfrac{1}{2}=\dfrac{x}{50}+\dfrac{2}{5}\)
Giải phương trình ta được: \(x = 180\) (thỏa mãn)
Gọi quãng đường AB là x ( đk x > 0 )
Nếu xe chạy với vận tốc 40km/h thì thời gian xe chạy hết quãng đường AB là : \(\frac{x}{40}\)
\(\Rightarrow\)thời gian dự định là : \(\frac{x}{40}-\frac{1}{2}\)( h )
Nếu xe chạy với vận tốc 50km/h thì thioiwf gian xe chạy hết quãng đường AB là : \(\frac{x}{50}\)
\(\Rightarrow\)thời gian dự định là : \(\frac{x}{50}+\frac{2}{5}\)(h)
Vì thời gian dự định không đổi nên ta có phương trình :
\(\frac{x}{40}-\frac{1}{2}=\frac{x}{50}+\frac{2}{5}\)(1)
Giải phương trình (1) , ta có :
phương trình (1) \(\Leftrightarrow\frac{5x}{200}-\frac{100}{200}=\frac{4x}{200}+\frac{80}{200}\)
\(\Rightarrow5x-100=4x+80\)
\(\Rightarrow x=180\)\(\left(tm\right)\)
Vậy quãng đường AB dài 180km
gọi vận tốc là x(km/h), thời gian là: y (giờ) đk(x,y>0)
quãng đường AB là:xy(km)
theo đề ta có hệ phương trình:
\(\hept{\begin{cases}\left(x+10\right).\left(y-2\right)=xy\\\left(x-10\right).\left(y+3\right)=xy\end{cases}}\)=>\(\hept{\begin{cases}xy-2x+10y-20=xy\\xy+3x-10y-30=xy\end{cases}}\)=>\(\hept{\begin{cases}-2x+10y=20\\3x-10y=30\end{cases}}\)=>\(\hept{\begin{cases}x=50\\y=12\end{cases}}\)
=> quãng đường AB là :50.12=600(km)
Gọi \(x\) (\(km\)/\(h\)) là vận tốc dự định \(\left(x>0\right)\)
\(\dfrac{35}{x}\left(h\right)\) là thời gian dự định
\(\dfrac{35}{x+3}\left(h\right)\) là thời gian khi tăng vận tốc thêm \(3km/h\)
Do đến B sớm hơn \(1h30p=1,5h\) nên ta có pt :
\(\dfrac{35}{x}-\dfrac{35}{x+3}=1,5\)
\(\Leftrightarrow\dfrac{35\left(x+3\right)-35x-1,5x\left(x+3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow35x+105-35x-1,5x^2-4,5x=0\)
\(\Leftrightarrow-1,5x^2-4,5+105=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=7\left(n\right)\\x_2=-10\left(l\right)\end{matrix}\right.\)
Vậy v dự định là \(7\left(km/h\right)\)