K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

Tham khảo:

 

Gọi x, y lần lượt là số hũ tương cà loại A, loại B mà chủ nông trại cần làm.

Ta có các điều kiện ràng buộc đối với x, y như sau:

-  Hiển nhiên \(x \ge 0,y \ge 0\)

-  Có 180 kg cà chua nên \(10x + 5y \le 180\)

-  Có 15 kg hành tây nên \(x + 0,25y \le 15\)

-  Số hũ tương loại A ít nhất gấp 3,5 lần số hũ tương loại B nên \(x \ge 3,5y\)

Từ đó ta có hệ bất phương trình:

\(\left\{ \begin{array}{l}10x + 5y \le 180\\x + 0,25y \le 15\\x \ge 3,5y\\x \ge 0\\y \ge 0\end{array} \right.\)

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.

 

Miền không gạch chéo (miền tam giác OAB, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Với các đỉnh \(O(0;0),A(14;4),\)\(B(15;0).\)

Gọi F là số tiền lãi (đơn vị: nghìn đồng) thu được, ta có: \(F = 200x + 150y\)

Tính giá trị của F tại các đỉnh của tứ giác:

Tại \(O(0;0),\)\(F = 200.0 + 150.0 = 0\)

Tại \(A(14;4),\)\(F = 200.14 + 150.4 = 3400\)

Tại \(B(15;0),\)\(F = 200.15 + 150.0 = 3000\)

F đạt giá trị lớn nhất bằng \(3400\) nghìn đồng tại \(A(14;4).\)

Vậy chủ nông trại đó nên làm 14 hũ loại A và 4 hũ loại B để tiền lãi thu được là lớn nhất.