K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2020

Số các chọn 4 bạn bất kì từ 11 bạn: \(C_{11}^4\)

Số cách chọn 4 bạn toàn lớp A: \(C_6^4\)

Số cách chọn 4 bạn toàn lớp B: \(C_5^4\)

Số cách chọn thỏa mãn: \(C_{11}^4-C_6^4-C_5^4=310\)

24 tháng 9 2021

a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :

\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách: 

\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\)  cách:

Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.

b) Nếu trong \(5\)  học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :

\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.

\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.

Còn lại bn tự lm nha, mỏi tay quá

24 tháng 1 2016

[Số cách chọn 4 em sao cho thuộc không quá 2 trong 3 lớp] = [Số cách chọn 4 em trong 12 em] - [số cách chọn mà mỗi lớp có ít nhất 1 em]

 Mà:

 [Số cách chọn 4 em trong 12 em] = \(C^4_{12}=\frac{12!}{4!\left(12-4\right)!}=495\)

 [số cách chọn mà mỗi lớp có ít nhất 1 em] = [Số cách chọn lớp A có 2 hs, lớp B, C mỗi lớp có 1 hs] + [Số cách chọn lớp B có 2 hs, lớp A, C mỗi lớp có 1 hs] + [Số cách chọn lớp C có 2 hs, lớp A, B mỗi lớp có 1 hs]

\(C^2_5.C^1_4.C^1_3+C^1_5.C^2_4.C^1_3+C^1_5.C^1_4.C^2_3\)

= 120            +    90          + 60

= 270

Vậy [Số cách chọn 4 em sao cho thuộc không quá 2 trong 3 lớp] = 495 - 270 =....

22 tháng 1 2016

ko qua

NV
23 tháng 9 2020

Số cách chọn 3 bạn đều là nam: \(A_8^3\)

Số cách chọn 3 bạn đều là nữ: \(A_{11}^3\)

Số cách thỏa mãn: \(A_{11}^3+A_8^3=1326\) cách

21 tháng 10 2018

TH 1: 4 học sinh được chọn thuộc một lớp:

 A: có  cách chọn C 5 4 = 5

 B: có  cách chọn   C 4 4 = 1

Trường hợp này có:  6 cách chọn.

TH 2: 4 học sinh được chọn thuộc hai lớp:

 A và B: có  C 9 4 - ( C 5 4 + C 4 4 ) = 120

 B và C: có C 9 4 - C 4 4 = 125

 C và A: có  C 9 4 - C 5 4 = 121

Trường hợp này có 366 cách chọn.

Vậy có 366+6=372 cách chọn thỏa yêu cầu bài toán.

Chọn C.

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

TH1: Chọn 2 bạn lớp A, 1 bạn B, 1 bạn C, có:

$C^2_4.C^1_5.C^1_6=180$ cách chọn

TH2: Chọn 1 bạn A, 2 bạn B, 1 bạn C, có:

$C^1_4.C^2_5.C^1_6=240$ cách chọn

TH3: Chọn 1 bạn A, 1 bạn B, 1 bạn C, có:

$C^1_4.C^1_5.C^2_6=300$ cách chọn

Tổng số cách chọn: $720$ cách chọn.

22 tháng 7 2018

Đáp án D.

NV
27 tháng 12 2020

Không gian mẫu: \(C_{30}^{10}\)

Số cách chọn sao cho 10 học sinh chỉ ở 2 tổ: \(C_{13}^{10}+C_{14}^{10}+C_{15}^{10}+C_{15}^{10}+C_{16}^{10}+C_{17}^{10}\)

Xác suất: \(P=1-\dfrac{C_{13}^{10}+C_{14}^{10}+C_{15}^{10}+C_{15}^{10}+C_{16}^{10}+C_{17}^{10}}{C_{30}^{10}}=...\)

 

19 tháng 1 2017

Chọn 3 học sinh lớp 12 có   cách

Chọn 1 học sinh lớp 11 có  cách

Chọn 1 học sinh lớp 10 có   cách.

 Do đó có   cách chọn.

Chọn B.