K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

8 tháng 3 2018

Chọn đáp án B.

Chọn ngẫu nhiên 5 học sinh trong 15 học sinh có C 15 5 = 3003 ⇒ n Ω = 3003  

Gọi X là biến cố “tất cả các học sinh A đều được chọn”.

TH1. 2 học sinh lớp B, 0 học sinh lớp C ⇒ C 5 2 . C 7 0 = 10  cách.

TH2. 0 học sinh lớp B, 2 học sinh lớp C  ⇒ C 5 0 . C 7 2 = 21  cách.

TH3. 1 học sinh lớp B, 1 học sinh lớp C  ⇒ C 5 1 . C 7 1 = 35  cách.

Suy ra số phần tử của không gian mẫu là n(X)=10+21=35=66 Vậy P=2/91

12 tháng 3 2019

Đáp án B

Gọi x,y lần lượt là số học sinh nữ ở nhóm I và nhóm II. Khi đó số học sinh nam ở nhóm II là  25 − 9 + x − y = 16 − x − y   . Điều kiện để mỗi nhóm đều có học sinh nam và nữ là x ≥ 1, y ≥ 1,16 − x − y ≥ 1 ;    x , y ∈ ℕ .

Xác suất để chọn ra được hai học sinh nam bằng  C 9 1 C 16 − x − y 1 C 9 + x 1 C 16 − x 1 = 0,54

⇔ 9 16 − x − y 9 + x 16 − x = 0,54 ⇔ 144 − 9 x − 9 y 144 + 7 x − x 2 = 0,54 ⇔ y = 184 25 − 71 50 x + 3 50 x 2

Ta có hệ điều kiện sau  x ≥ 1 184 25 − 71 50 x + 3 50 x 2 ≥ 1 16 − x − 184 25 − 71 50 x + 3 50 x 2 ≥ 1 x ∈ ℕ

⇔ x ≥ 1 3 50 x 2 − 71 50 x + 159 25 ≥ 0 − 3 50 x 2 + 21 50 x + 191 25 ≥ 0 x ∈ ℕ ⇔ x ≥ 1 x ≥ 53 3 x ≤ 6 21 − 5 201 6 ≤ x ≤ 21 + 5 201 6 x ∈ ℕ ⇔ 1 ≤ x ≤ 6 x ∈ ℕ

Ta có bảng các giá trị của :

Vậy ta tìm được hai cặp nghiệm nguyên x ; y  thỏa mãn điều kiện là   1 ; 6 và  6 ; 1   .

Xác suất để chọn ra hai học sinh nữ là C x 1 C y 1 C 9 + x 1 C 16 − x 1 = x y 9 + x 16 − x .

Nếu x ; y ∈ 1 ; 6 , 6 ; 1  thì xác suất này bằng 1 25 = 0,04 .

13 tháng 6 2019

4 tháng 12 2017

29 tháng 4 2019

Coi 5 bạn của cả 12A và B vào một lớp 12X nào đó. Do số lượng ở đề nên ta có hai trường hợp

TH1. Các bạn 12C và 12X xen kẽ nhau. Có 5!.5!.2 = 28800 cách

TH2. Có hai bạn lớp 12A và 12B dính với nhau. Ta có như 12X chỉ có 4 bạn. rồi lại làm xen kẽ. Chọn 2 bạn dính nhau và hoán vị 2 bạn đó có 12 cách, 5 bạn 12C tạo ra 4 khe để 4 bạn của lớp 12X đứng vào nên có tất cả là 12.5!.4! = 34560

Đáp án cần chọn là A

22 tháng 2 2018

Đáp án A.

Kí hiệu học sinh các lớp 12A, 12B,12C

lần lượt là A,B,C.

Ta sẽ xếp 5 học sinh của lớp 12C trước,

khi đó xét các trường hợp sau:

TH1: CxCxCxCxCx với x thể hiện là

ghế trống.

Khi đó, số cách xếp là 5!5! cách.

TH2: xCxCxCxCxC giống với TH1

⇒  có 5!5! cách xếp.

TH3: CxxCxCxCxC với xx là hai ghế

trống liền nhau.

Chọn 1 học sinh lớp 12A và 1 học sinh

lớp 12B vào 2 ghế trống ⇒ 2.3.2! cách

xếp. Ba ghế trống còn lại ta sẽ xếp 3 học

sinh còn lại của 2 lớp 12A-12B

⇒  3! cách xếp.

Do đó, TH3 có 2.3.2!.3!.5! cách xếp. 

Ba TH4. CxCxxCxCxC.

TH5. CxCxCxxCxC.

TH6. CxCxCxCxCxx tương tự TH3.

Vậy có tất cả 2.5!5!+4.2.3.2!.3!.5!=63360

cách xếp cho các học sinh.

Suy ra xác suất cần tính là  P = 63360 10 ! = 11 630 .

1 tháng 11 2018

Đáp án A

Xếp 10 học sinh thành hàng ngang: 10!

Xếp 5 học sinh của lớp 12C: 5!

Giữa 5 học sinh của lớp 12C có 6 chỗ trống. do hai học sinh của lớp 12C không thể đứng gần nhau nên buộc phải có 4 người

TH1: Có 1 học sinh A hoặc B ở phía ngoài, 4 học sinh còn lại xếp vào 4 chỗ trống ở giữa các bạn C, có 2.5!

TH2: có 1 cặp học sinh A và B vào 1 chỗ trống, 3 học sinh còn lại xếp vào 3 vị trí còn lại, có 2.3.2.4.3!

19 tháng 6 2019

Đáp án A

Xếp 10 học sinh thành hàng ngang: 10!

Xếp 5 học sinh của lớp 12C: 5!

Giữa 5 học sinh của lớp 12C có 6 chỗ trống. do hai học sinh của lớp 12C không thể đứng gần nhau nên buộc phải có 4 người

TH1: Có 1 học sinh A hoặc B ở phía ngoài, 4 học sinh còn lại xếp vào 4 chỗ trống ở giữa các bạn C, có 2.5!

TH2: có 1 cặp học sinh A và B vào 1 chỗ trống, 3 học sinh còn lại xếp vào 3 vị trí còn lại, có 2.3.2.4.3!

⇒ p = 5 ! ( 2.5 ! + 2.3.2.4.3 ! ) 10 ! = 11 630