Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kí hiệu S là đồng xu ra mặt sấp và N là đồng xu ra mặt ngửa. Ta có sơ đồ cây
Dựa vào sơ đồ cây ta suy ra \(n\left( \Omega \right) = 16\).
b) Gọi A là biến cố: “gieo đồng xu 4 lần có hai lần xuất hiện mặt sấp và hai lần xuất hiện mặt ngửa”
Suy ra \(A = \left\{ {SSNN;SNSN;SNNS;NSSN;NSNS;NNSS} \right\}\). Suy ra \(n\left( A \right) = 6\). Vậy\(P\left( A \right) = \frac{6}{{16}} = \frac{3}{8}\).
a: n(A)=2
n(omega)=2*2*2=8
=>P(A)=2/8=1/4
b: B={(NSS); (SNS); (SSN)}
=>n(B)=3
=>P(B)=3/8
c: C={NSS; NSN; SSN; SSS}
=>n(C)=4
=>P(C)=4/8=1/2
d: D={NSN; NNS; NNN; SNN; NSS; SNS; SSN}
=>n(D)=6
=>P(D)=6/8=3/4
a) Trước khi An gieo con xúc xắc, ta không thể biết bạn nào sẽ chiến thắng. Vì kết quả xúc xắc là ngẫu nhiên, không thể đoán trước
b) Các kết quả có thể xảy ra trong hai lần gieo là (lần lượt số chấm theo thứ tự gieo xúc xắc): 11; 12; 13; 14; 15; 16; 21; 22; 23; 24; 25; 26; 31; 32; 33; 34; 35; 36; 41; 42; 43; 44; 45; 46; 51; 52; 53; 54; 55; 56; 61; 62; 63; 64; 65; 66
n(omega)=2*2*2=8
A={(NNS); (NSN); (SNN)}
=>n(A)=3
=>P(A)=3/8
+) Khi gieo một xúc xắc hai lần liên tiếp, có 36 kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo, đó là:
(1; 1) (1 : 2) (1 : 3) (1; 4) (1;5) (1; 6)
(2 ; 1) (2 ; 2) (2;3) (2 ; 4) (2;5) (2 ; 6)
(3;1) (3; 2) (3;3) (3 ; 4) (3;5) (3;6)
(4; 1) (4; 2) (4;3) (4;4) (4;5) (4; 6)
(5;1) (5;2) (5;3) (5; 4) (5;5) (5;6)
(6;1) (6;2) (6;3) (6; 4) (6;5) (6;6)
• Tập hợp Q các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo là\(\Omega = {\rm{ }}\left\{ {\left( {i,j} \right){\rm{ | }}i,{\rm{ }}j{\rm{ }} = {\rm{ }}1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}5,{\rm{ }}6} \right\}\) , trong đó (i,j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.
• Tập hợp \(\Omega \) gọi là không gian mẫu trong trò chơi gieo một xúc xắc hai lần liên tiếp.
Tổng số kết quả có thể xảy ra của phép thử là \(n\left( \Omega \right) = {2^4}\)
a) Biến cố đối của biến cố “Xuất hiện ít nhất ba mặt sấp” là biến cố “ Xuất hiện nhiều nhất một mặt sấp”
Biến cố xảy ra khi trên mặt đồng xu chỉ xuất hiện một hoặc không có mặt sấp nào. Số kết quả thuận lợi cho biến cố là \(C_4^1 + 1 = 5\)
Xác suất của biến cố là \(P = \frac{5}{{{2^4}}} = \frac{5}{{16}}\)
b) Biến cố đối của biến cố “Xuất hiện ít nhất một mặt ngửa” là biến cố “ Không xuất hiện mặt ngửa nào”
Biến cố xảy ra khi tất cả các mặt đồng là mặt sấp. Chỉ có 1 kết quả thuận lợi cho biến cố
Xác suất của biến cố là \(P = \frac{1}{{{2^4}}} = \frac{1}{{16}}\)
Lời giải:
Mỗi lần gieo sẽ có 2 khả năng (sấp, ngửa). Gieo 4 lần sẽ có thể có $2^4=16$ khả năng xảy ra (không gian mẫu)
Các khả năng tung mà có ít nhất 2 lần xuất hiện mặt ngửa:
NNSS, NNSN, NNNN, NNNS, SNNN, SNNS, SSNN, NSNN
=> có 8 khả năng.
Xác suất: $\frac{8}{16}=\frac{1}{2}$
Tập hợp \(\Omega \) các kết quả có thể xảy ra của phép thử trên là \(\Omega = {\rm{ }}\{ 1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}4;{\rm{ }}5;{\rm{ }}6\} .\)
a) Sơ đồ cây
b) Từ sơ đồ cây ta có \(n\left( \Omega \right) = 12\).
Ta có \(F = \left\{ {\left( {1,N} \right);\left( {2,N} \right);\left( {3,N} \right);\left( {4,N} \right);\left( {5,N} \right);\left( {6,N} \right)} \right\}\). Suy ra \(n\left( F \right) = 6\). Vậy \(P\left( F \right) = \frac{6}{{12}} = 0,5\).
\(G = \left\{ {\left( {1,S} \right);\left( {2,S} \right);\left( {3,S} \right);\left( {4,S} \right);\left( {5,S} \right);\left( {6,S} \right);\left( {5,N} \right)} \right\}\). Suy ra \(n\left( G \right) = 7\). Vậy \(P\left( G \right) = \frac{7}{{12}}\).
Mỗi lần gieo có 2 khả năng xảy ra: xấp hoặc ngửa
Nếu người đó gieo 3 lần thì có thể có số khả năng xảy ra là:
2.2.2 = 8 (khả năng)