Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng đường AB dài là:
60 x 2 = 120 (km)
Nếu người đó đi với vận tốc 40km/h thì cần thời gian là:
120: 40 = 3 giờ
Gọi vận tốc dự định là x
Thời gian dự định là 90/x
Theo đề, ta có: \(\dfrac{30}{x}+\dfrac{60}{x+6}+\dfrac{1}{3}=\dfrac{90}{x}\)
=>\(\dfrac{-60}{x}+\dfrac{60}{x+6}=\dfrac{-1}{3}\)
=>\(\dfrac{-60x-360+60x}{x^2+6x}=\dfrac{-1}{3}\)
=>-x^2-6x=-1080
=>x^2+6x-1080=0
=>x=30
gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.
suy ra tg dự định đi hết quãng đg AB là 100/x ( h)
1/3 quãng đg đầu xe đi hết : 100x/3 (h)
2/3 quãng đg sau xe đi với vận tốc (x + 10) km/h hết 200(x+10)/3 (h)
theo bài ra ta có pt :
\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)
gpt ta tìm x
Đổi \(30^,=\frac{1}{2}h\)
Thời gian dự định đi hết quãng đường AB là : \(\frac{S_{AB}}{10}\) (h)
Thời gian đi hết nửa đoạn đường đầu là : \(\frac{S_{AB}}{2}:10=\frac{S_{AB}}{20}\)(h)
Thời gian đi hết nửa đoạn đường sau là : \(\frac{S_{AB}}{2}:15=\frac{S_{AB}}{30}\)(h)
Ta có phương trình : \(\frac{S_{AB}}{10}=\frac{1}{2}+\frac{S_{AB}}{20}+\frac{S_{AB}}{30}\)
\(\Leftrightarrow\frac{S_{AB}}{10}-\frac{S_{AB}}{20}-\frac{S_{AB}}{30}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{60}S_{AB}=\frac{1}{2}\Rightarrow S_{AB}=\frac{1}{2}:\frac{1}{60}=30\left(km\right)\)
Vậy quãng đường AB dài 30km
-Gọi thời gian người đi xe đạp từ A đến B là t , quãng đường AB là S ta có PT sau:
t = S/10 = S2x10 +S/2x15 + 1/2 (30 phút =1/2 h ) giải PT này rất đơn giản, quy đồng MSC là 60 nhân lên ta có :6S= 3S+2S+30 vậy S=30 km
Đáp số : 30 km
Gọi \(x\left(km\right)\) là độ dài quãng đường AB \(\left(x>0\right)\)
Như vậy quãng đường từ điểm xuất phát đến điểm xe bị hỏng sẽ bằng \(\dfrac{1}{3}x\left(km\right)\)
Thời gian từ khi người đó xuất phát đến khi xe bị hỏng là \(\dfrac{\dfrac{1}{3}x}{12}=\dfrac{1}{36}x\left(h\right)\)
Quãng đường còn lại sẽ bằng \(\dfrac{2}{3}x\left(km\right)\)
Thời gian người đó đi ô tô từ điểm xe bị hỏng đến B là \(\dfrac{\dfrac{2}{3}x}{26}=\dfrac{1}{39}x\left(h\right)\)
Tổng thời gian người đó đã đi từ A đến B trong thực tế là \(\dfrac{1}{36}x+\dfrac{1}{39}x+\dfrac{1}{3}\left(h\right)\) (có số hạng \(\dfrac{1}{3}\) do người đó còn phải chờ \(20p=\dfrac{1}{3}h\) khi xe bị hỏng)
Theo dự định, thời gian người đó đi từ A đến B là \(\dfrac{x}{12}\left(h\right)\)
Vì người đó đến B sớm hơn dự định \(1h20p=\dfrac{4}{3}h\) nên ta có pt \(\dfrac{x}{12}-\left(\dfrac{1}{36}x+\dfrac{1}{39}x+\dfrac{1}{3}\right)=\dfrac{4}{3}\)
\(\Leftrightarrow\left(\dfrac{1}{12}-\dfrac{1}{36}-\dfrac{1}{39}\right)x-\dfrac{1}{3}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{7}{234}x=\dfrac{5}{3}\)
\(\Leftrightarrow x=\dfrac{390}{7}\approx55,714\left(nhận\right)\)
Vậy độ dài quãng đường AB là khoảng \(55,714km\)