Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi cạnh nhình vuông lớn nhất là a(a thuộc N)
Vì chia mảnh đất thành những khoảnh nhình vuông bằng nhau
=>52 chia hết cho a
36 chia hết cho a
a lớn nhất
=> a = ƯCLN(52,36)
Ta có
52=22*13
36=22*32
=> a=22=4
Vậy cạnh hình vuông lớn nhất là 4m
Gọi x là cạnh hình vuông lớn nhất
Theo đề bài ta có:
Để thỏa mãn đề bài:
52:x ;36:x (x là số lớn nhất)
=> x là WWCLN (52 ;36)
52=2^2 x 13
36 = 2^2 x3^3
ƯCLN (52 ;36) =2^2=4
Vậy với cách chia có độ dài là 4m là lớn nhất
Gọi x là hình vuông lớn nhất .
Theo đề bài ta có :
52 : x ; 36 : x (x là số lớn nhất )
\(\Rightarrow x\inƯCLN\left(52;36\right)\)
\(ƯCLN\left(52;36\right)=2^2=4\)
Vậy với cách chia có độ dài là 4 m là lớn nhất
Chúc bạn học tốt !!!
Bài giải
Gọi x là độ dài lớn nhất của cạnh hình (x \(\in\)N*)
Theo đề bài, có: 52 \(⋮\)x ; 36 \(⋮\)x và x lớn nhất
Suy ra x \(\in\)ƯCLN (52; 36)
52 = 22.13
36 = 22.32
ƯCLN (52; 36) = 22 = 4
Suy ra x = 4 (m)
Vậy độ dài lớn nhất của cạnh hình vuông là 4 m
Với cách chia là mỗi hình vuông có cạnh 4 m
Câu hỏi của Nguyễn Phương Thảo 2008 - Toán lớp 6 - Học toán với OnlineMath
Lời giải:
Gọi độ dài cạnh hình vuông là $x$ (m)
Để chia đám đất hcn kia thành các hình vuông bằng nhau thì:
$52\vdots x, 36\vdots x$ hay $x$ là ƯC$(36,52)$
Để $x$ lớn nhất thì $x=ƯCLN(36,52)$
Ta thấy:
$36=2^2.3^2$
$52=2^2.13$
$\Rightarrow x=ƯCLN(36,52)=2^2=4$ (m)
Vậy cạnh hình vuông lớn nhất là $4$ (m)
Lời giải:
Gọi $x$ là độ dài cạnh của đám đất hình vuông. Khi đó, $x$ phải là ước của $52$ và $36$
Để $x$ lớn nhất thì $x=ƯCLN(52,36)$
$\Rightarrow x=4$ (m)
Vậy chia đám đất thành các mảnh đất hình vuông có độ dài 4m.