K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1

a) Chọn 3 em nam và 2 em nữ có \(C_{50}^2\cdot C_{50}^3\) cách 

\(\Rightarrow P=\dfrac{C^3_{30}\cdot C_{20}^2}{C^5_{50}}=\dfrac{2755}{7567}\)   

b) TH1: 5 em nam có \(C^5_{30}\) cách

TH2: 4 em nam và 1 em nữ có: \(C^4_{30}\cdot C^1_{20}\) cách 

TH3: 3 em nam và 2 em nữ có: \(C^3_{30}\cdot C_{20}^2\) cách

TH4: 2 em nam và 3 em nữ có: \(C^2_{30}\cdot C_{20}^3\) cách 

TH5: 1 em nam và 4 em nữ có: \(C^1_{30}\cdot C^4_{20}\) cách 

Xác xuất: \(P=\dfrac{C^5_{30}+C_{30}^4\cdot C_{20}^1+C^3_{30}\cdot C^2_{20}+C^2_{30}\cdot C^3_{20}+C^1_{30}\cdot C^4_{20}}{C^5_{50}}=\dfrac{262907}{264845}\) 

c) TH1: 4 em nam và 1 em nữ có \(C^4_{30}\cdot C^1_{20}\) cách

TH2: 3 em nam và 2 em nữ có \(C^3_{30}\cdot C^2_{20}\) cách 

TH3: 2 em nam và 3 em nữ có \(C^2_{30}\cdot C^3_{20}\) cách 

TH4: 1 em nam và 4 em nữ có \(C^1_{30}\cdot C^4_{20}\) cách 

Xác xuất: \(P=\dfrac{C_{30}^4\cdot C_{20}^1+C^3_{30}\cdot C^2_{20}+C^2_{30}\cdot C^3_{20}+C^1_{30}\cdot C^4_{20}}{C^5_{50}}=\dfrac{8525}{9212}\)

NV
11 tháng 11 2021

a. Chọn bất kì 5 học sinh từ 50 học sinh có: \(C_{50}^5\) cách

b. Lớp có 20 học sinh nam. Chọn 5 bạn trong đó có 2 bạn nam (suy ra 3 bạn nữ) đồng nghĩa: chọn 2 nam từ 20 nam và 3 nữ từ 30 nữ

\(\Rightarrow\) Có \(C_{20}^2.C_{30}^3\) cách

c. Số cách chọn 5 bạn toàn là nữ: \(C_{30}^5\) cách

Số cách chọn 5 bạn có ít nhất 1 nam: \(C_{50}^5-C_{30}^5\) cách

29 tháng 12 2018

Đáp án D.

22 tháng 8 2023

tham khảo

a) Số kết quả thuận lợi cho biến cố A là \(C^3_{17}=680\)

Số kết quả thuận lợi cho biến cố B là \(C^2_{17}.C^1_{15}=2040\)

b)\(A\cup B\)  là biến cố "Có ít nhất 2 học sinh nữ trong 3 học sinh được chọn"Số kết quả thuận lợi cho biến cố \(A\cup B\) là:\(680+2040=2720\)
4 tháng 12 2017

Đáp án B

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản

Lời giải:

Chọn 2 học sinh trong 20 học sinh có C 20 2 = 190 ⇒ n ( Ω ) = 190 .  

Gọi X là biến cố 2 học sinh được chọn trong đó có cả nam và nữ

Chọn 1 học sinh nam trong 8 nam có 8 cách, chọn 1 học sinh nữ trong 12 nữ có 12 cách.

Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 8.12 = 96.

Vậy  P = n ( X ) N ( Ω ) = 48 95 .

3 tháng 1 2017

Chọn C

Chọn mỗi tổ hai học sinh nên số phần tử của không gian mẫu là 

Gọi biến cố A: “Chọn 4 học sinh từ 2 tổ sao cho 4 em được chọn có 2 nam và 2 nữ”

Khi đó, xảy ra các trường hợp sau:

TH1: Chọn 2 nam ở Tổ 1, 2 nữ ở Tổ 2. Số cách chọn là

TH2:  Chọn 2 nữ ở Tổ 1, 2 nam ở Tổ 2. Số cách chọn là .

TH3: Chọn ở mỗi tổ 1 nam và 1 nữ. Số cách chọn là 

Suy ra, n(A) = 

Xác suất để xảy ra biến cố A là: 

15 tháng 4 2018


AH
Akai Haruma
Giáo viên
29 tháng 8 2021

Lời giải:

a. Xác suất chọn hsg là:

$\frac{40}{100}.\frac{70}{100}+\frac{20}{100}.\frac{30}{100}=\frac{17}{50}$

b.

Chọn ngẫu nhiên 3 hs, có $C^3_{100}$ cách chọn 

Số hsg là: $(\frac{40}{100}.\frac{70}{100}+\frac{20}{100}.\frac{30}{100}).100=34$ (hs)

Chọn ngẫu nhiên được 2 hsg có $C^2_{34}C^1_{100-34}=C^2_{34}.C^1_{66}$ cách chọn 

Xác suất cần tìm: $p=\frac{C^2_{34}.C^1_{66}}{C^3_{100}}=\frac{561}{2450}$