Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Diện tích thiết diện của hình trụ là S = 2 a .2 a 2 − a 2 2 = 2 3 a 2
Đáp án C.
Gọi thiết diện mặt cắt là hình vuông ABCD.
Xét mặt đáy tâm O như hình vẽ. Vì thiết diện qua trục là hình vuông cạnh 2a nên chiều cao của hình trụ OO' = 2a = BC và OA = a.
⇒ A B = 2 O A 2 - O M 2 = a 3
Diện tích thiết diện cần tính: A B . C D = 2 a 2 3 .
Đáp án B
Theo bài ra, ta có R = a S = 8 a 2 ⇒ S = h .2 R = 8 a 2 ⇒ h = 4 a .
Vậy diện tích xung quanh của hình trụ là S x q = 2 π R h = 8 π a 2
S A B C D = 8 a 2 ⇒ 2 a . h = 8 a 2 ⇔ h = 4 a
Diện tích xung quanh của hình trụ:
S x q = 2 πRh = 2 π . a . 4 a = 8 πa 2
Thể tích khối trụ
V t r ụ = πR 2 h = πa 4 . 4 a = 4 πa 3
Chọn đáp án C.
Đáp án C.
Gọi R,h,l lần lượt là bán kính đáy, chiều cao, đường sinh của hình trụ.
Ta có diện tích xung quanh S x q = 4 π ⇔ 2 πRl = 4 π ⇒ Rl = 2 .
Giả sử AB là một dây cung của đường tròn đáy của hình trụ và căng một cung 120 ° . Vì ABA’A’ là hình chữ nhật có AA' = h = l.
Xét tam giác OAB cân tại O, có O A = O B = R A O B ^ = 120 ° ⇒ A B = R 3 .
Vậy diện tích cần tính là S A B B ' A ' = A B . A A ' = R 3 . 1 = 2 3 .