Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Gọi chiều dài ,chiều rộng ban đầu lần lượt là \(a,b\left(cm\right)\left(a,b>0\right)\)
Gọi diện tích ban đầu là \(S\left(cm^2\right)\left(S>0\right)\)
\(\Rightarrow ab=S\)
Theo đề bài,nếu tăng chiều rộng 2cm2cm và giảm chiều dài 11cm thì diện tích hình chữ nhật tăng 99cm22, nếu giảm chiều rộng 11cm và tăng chiều dài 22cm thì diện tích của hình chữ nhật không đổi.Khi đó,ta có hệ phương trình sau:
\(\Rightarrow\hept{\begin{cases}ab=S\\\left(a-1\right)\left(b+2\right)=S+9\\\left(a+2\right)\left(b-1\right)=S\end{cases}}\)
Ta có:(a-1)(b+2)=S+9
\(\Leftrightarrow ab+2a-b-2=S+9\)
\(\Leftrightarrow2a-b=11\left(1\right)\)(Do ab=S)
Ta lại có:(a+2)(b-1)=S
\(\Leftrightarrow ab+2b-a-2=S\)
\(\Leftrightarrow2b-a=2\left(2\right)\)(Do ab=S)
Từ (1) và (2)
\(\Rightarrow\hept{\begin{cases}2a-b=11\\2b-a=2\end{cases}\Leftrightarrow\hept{\begin{cases}2a-b=11\\4b-2a=4\end{cases}}}\)
\(\Rightarrow\left(2a-b\right)+\left(4b-2a\right)=11+4\)
\(\Leftrightarrow3b=15\)
\(\Leftrightarrow b=5\)
\(\Rightarrow a=\frac{b+11}{2}=\frac{5+11}{2}=8\)
Vậy chiều dài và chiều rộng của hình chữ nhật ban đầu là 8 cm và 5 cm
Gọi chiều dài hcn là a => chiều rộng hcn là a-7
Áp dụng định lí Py-ta-go ta có
\(a^2+\left(a-7\right)^2=13^2\)
\(\Rightarrow a^2+a^2-14a+49=169\)
\(\Rightarrow2a^2-14a=120\)
\(\Rightarrow2a\left(a-7\right)=120\)
\(\Rightarrow a\left(a-7\right)=60\)
Vậy diện tích mảnh vườn là 60 cm2
gọi x là chiều dài của HCN —» chiều rộng HCN = x - 7
Theo Định lý pitago ta có :
13² = (x - 7 )² + x²
<=> 169 = x² - 14x + 49 + x²
<=> 120 = 2x² - 14x
<=> 2x² - 14x - 120 = 0
bấm máy dc : x= -5 ( loại khoảng cách không âm ) va x = 12 (nhận) suy ra chiều rộng bằng 12 - 7 = 5m
Vậy chiều dài bằng 12 và chiều rộng bằng 5
Lời giải:
Gọi chiều rộng hcn là $a$ (m) thì chiều dài là $a+7$ (m)
Nếu tăng chiều dài hcn thêm 1/4 phần thì chiều dài hcn là $1,25(a+7)$ (m)
Diện tích ban đầu: $a(a+7)$
Diện tích lúc sau: $1,25(a+7)a$
Phần diện tích tăng thêm: $1,25a(a+7)-a(a+7)=15$
$\Leftrightarrow 0,25a(a+7)=15$
$\Leftrightarrow a(a+7)=60$
$\Leftrightarrow a^2+7a-60=0$
$\Leftrightarrow a=5$ (chọn) hoặc $a=-12$ (loại)
Vậy chiều rộng hcn là $a=5$ (m), chiều dài là $a+7=12$ (m)
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của hình chữ nhật(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chiều dài hơn chiều rộng 5m nên ta có phương trình: a-b=5(1)
Diện tích ban đầu của hình chữ nhật là:
\(ab\left(m^2\right)\)
Vì khi giảm chiều dài đi 2m và tăng chiều rộng gấp đôi thì diện tích lớn hơn diện tích ban đầu 240m2 nên ta có phương trình:
\(\left(a-2\right)\cdot2b=ab+240\)
\(\Leftrightarrow2ab-4b=ab+240\)
\(\Leftrightarrow ab-4b=240\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\ab-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b\left(5+b\right)-4b=240\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\5b+b^2-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b^2+b-240=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b^2+16b-15b-240=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+16\right)-15\left(b+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+16\right)\left(b-15\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b+16=0\\b-15=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b=-16\left(loại\right)\\b=15\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài ban đầu là 20m; Chiều rộng ban đầu là 15m
đặt
chiều rộng HCN là a
Chiều dài HCN là b
Đường chéo là c => c=b+2
Ta có
\(c^2=a^2+b^2\left(Pitago\right)\)
\(\Rightarrow\left(b+2\right)^2=7^2+b^2\Leftrightarrow b^2+2b+4=49+b^2\)
\(\Rightarrow b=22,5cm\)
\(S=a.b=7.22,5=157,5cm^2\)