K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

Áp dụng công thức tính số đường chéo theo số cạnh của đa giác là:  số đường chéo = \(\frac{n\left(n-3\right)}{2}\)trong đó n là số cạnh của đa giác.

Ta có:  \(\frac{n\left(n-3\right)}{2}=209\). Bạn tự giải phương trình tìm n là ra.

3 tháng 10 2015

Trong 1 hình đa giác, 1 điểm có thể nối với (n - 3) điểm còn lại với n là số cạnh của đa giác.

Có n cạnh như vậy thì nối được (n - 3)n đường chéo : 2

=> \(\frac{\left(n-3\right)n}{2}=209\)

=> \(\left(n-3\right)n=418\)

=> \(n\in\left\{22;-19\right\}\)

Loại bỏ nghiệm âm, ta có kết quả : Đa giác có 22 cạnh .

Li-ke cho mình nhé!