K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Đặt \(a = BC,b = AC,c = AB\)

Ta có: \(a = 800,b = 700,c = 500.\)

Áp dụng định lí cosin, ta có:

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}.\)

Suy ra:

\(\begin{array}{l}\cos A = \frac{{{{700}^2} + {{500}^2} - {{800}^2}}}{{2.700.500}} = \frac{1}{7} \Rightarrow \widehat A = {81^o}47'12,44'';\\\cos B = \frac{{{{500}^2} + {{800}^2} - {{700}^2}}}{{2.500.800}} = \frac{1}{2} \Rightarrow \widehat B = {60^o};\\\cos C = \frac{{{{800}^2} + {{700}^2} - {{500}^2}}}{{2.800.700}} = \frac{{11}}{{14}} \Rightarrow \widehat C = {38^o}12'47,56''.\end{array}\)

Vậy \(\widehat A = {81^o}47'12,44'';\widehat B = {60^o};\widehat C = {38^o}12'47,56''.\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Xét tam giác CDB, ta có: CD = 441, CB = 575 và DB = 538 (đơn vị: m)

Và nửa chu vi là: \(\frac{{441 + 575 + 538}}{2} = 777(m)\)

Do đó: \({S_{CDB}} = \sqrt {777.\left( {777 - 441} \right).\left( {777 - 575} \right).\left( {777 - 538} \right)}  \approx 112267,7\left( {{m^2}} \right)\)

Xét tam giác DBE, ta có: DE = 217, EB = 476 và DB = 538 (đơn vị: m)

Và nửa chu vi là: \(\frac{{217 + 476 + 538}}{2} = 615,5(m)\)

Do đó: \({S_{DBE}} = \sqrt {615,5.\left( {615,5 - 217} \right).\left( {615,5 - 476} \right).\left( {615,5 - 538} \right)}  \approx 51495,13\left( {{m^2}} \right)\)

Xét tam giác ABE, ta có: AE = 401, EB = 476 và BA =256 (đơn vị: m)

Và nửa chu vi là: \(\frac{{401 + 476 + 256}}{2} = 566,5(m)\)

Do đó: \({S_{ABE}} = \sqrt {566,5.\left( {566,5 - 401} \right).\left( {566,5 - 476} \right).\left( {566,5 - 256} \right)}  \approx 51327,97\left( {{m^2}} \right)\)

Vậy diện tích S của ngũ giác ABCDE là: \(S = {S_{CDB}} + {S_{DBE}} + {S_{ABE}} \approx 112267,7 + 51495,13 + 51327,97 = 215090,8\left( {{m^2}} \right)\)

Chú ý

+) Để tính diện tích ngũ giác ABCDE thông qua các tam giác nhỏ, ta cần chọn các tam giác thỏa mãn: “phần trong của chúng không đè lên nhau” và “ghép lại vừa khít tạo thành ngũ giác ABCDE”

+) Ưu tiên tính thông qua các tam giác đã biết đủ các cạnh.

24 tháng 9 2023

Tham khảo:

Xét tam giác ABC như hình dưới:

 

Áp dụng định lí cosin tại đỉnh A ta có:

\({a^2} = {b^2} + {c^2} - \,2b\,c.\cos A\)

\(\begin{array}{l} \Leftrightarrow B{C^2} = {6^2} + 4,{3^2} - 2.6.4,3.\cos 67,{61^o}\\ \Leftrightarrow B{C^2} \approx 34,835\\ \Leftrightarrow BC \approx 5,9\end{array}\)

Như vậy kết quả thu được từ định lí xấp xỉ với kết quả đo được.

Nói các khác định lí cosin tại đỉnh A là đúng.

25 tháng 9 2023

Tham khảo:

Kí hiệu các điểm A, B, C như hình dưới

 

Đặt \(AB = c,AC = b,BC = a.\)

Ta có: \(BC = 3,2;\widehat A = {180^o} - ({48^o} + {105^o}) = {27^o}\)

Áp dụng định lí sin, ta có:

\(\frac{b}{{\sin B}} = \frac{a}{{\sin A}} \Rightarrow AC = b = \frac{{a.\sin B}}{{\sin A}} = \frac{{3,2.\sin {{48}^o}}}{{\sin {{27}^o}}} \approx 5,24(m)\)

Áp dụng công thức \(S = \frac{1}{2}ab\sin C\) ta có:

\(S = \frac{1}{2}.3,2.5,24\sin {105^o} \approx 8,1({m^2})\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Chiều rộng của tấm bìa là \(\overline R  = 170 \pm 2mm\), nghĩa là chiều rộng gần đúng \(R = 170\)với độ chính xác \(d = 2\)

Suy ra kích thước chiều rộng nằm trong khoảng \(\left[ {170 - 2;170 + 2} \right]\) hay \(\left[ {168;{\rm{ }}172} \right].\)

Tương tự, chiều dài của tấm bìa là \(\overline D  = 240 \pm 2mm\)

Vậy kích thước chiều dài nằm trong khoảng \(\left[ {240 - 2;240 + 2} \right]\) hay \([238;242]\)

b) Chiều rộng gần đúng là 170 mm, chiều dài gần đúng là 240 mm.

Khi đó, diện tích tấm bìa là \(S = 170.240 = 40800\;(m{m^2})\)

Diện tích đúng, kí hiệu \(\overline S \), của tấm bìa trên thỏa mãn:

\(168.238 < \overline S  < 172.242 \Leftrightarrow 39984 < \overline S  < 41624\)

Do đó \(39984 - 40800 < \overline S  - 40800 < 41624 - 40800\) hay \( - 816 < \overline S  - S < 824 \Rightarrow \left| {\overline S  - S} \right| < 824\)

Vậy diện tích tấm bìa là \(40800 \pm 824\;\left( {m{m^2}} \right)\)

Cách 2:

Diện tích tấm bìa là:

\(\overline S  = \left( {170 \pm 2} \right)\left( {240 \pm 2} \right) = 170.240 \pm \left( {170.2 + 240.2 + 2.2} \right) = 40800 \pm 824\left( {m{m^2}} \right)\)

Vậy diện tích tấm bìa là \(40800 \pm 824\;\left( {m{m^2}} \right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(a = BC = 20;\;b = AC = 15;\;c = AB = 12.\)

a) Áp dụng định lí cosin trong tam giác ABC, ta có:

 \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\;\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)

\( \Rightarrow \cos A = \frac{{{{15}^2} + {{12}^2} - {{20}^2}}}{{2.15.12}};\;\cos B = \frac{{{{20}^2} + {{12}^2} - {{15}^2}}}{{2.20.12}}\)

\( \Rightarrow \cos A =  - \frac{{31}}{{360}};\;\cos B = \frac{{319}}{{480}}\)

\( \Rightarrow \widehat A = 94,{9^o};\;\widehat B = 48,{3^o}\)

\( \Rightarrow \widehat C = {180^o} - \left( {94,{9^o} + 48,{3^o}} \right) = 36,{8^o}\)

b)

Diện tích tam giác ABC là: \(S = \frac{1}{2}.bc.\sin A = \frac{1}{2}.15.12.\sin 94,{9^o} \approx 89,7.\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Áp dụng định lí cosin trong tam giác ABC ta có:

\(A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos C\)

\(\begin{array}{l} \Leftrightarrow A{B^2} = {15^2} + {12^2} - 2.15.12.\cos {120^o}\\ \Leftrightarrow A{B^2} = 549\\ \Leftrightarrow AB \approx 23,43\end{array}\)

b) Áp dụng định lí sin trong tam giác ABC, ta có:

\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}}\)

\( \Rightarrow \sin A = \frac{{BC}}{{AB}}.\sin C = \frac{{12}}{{23,43}}.\sin {120^o} \approx 0,44\)

\( \Rightarrow \widehat A \approx {26^o}\) hoặc \(\widehat A \approx {154^o}\) (Loại)

Khi đó: \(\widehat B = {180^o} - ({26^o} + {120^o}) = {34^o}\)

c)

Diện tích tam giác ABC là: \(S = \frac{1}{2}CA.CB.\sin C = \frac{1}{2}.15.12.\sin {120^o} = 45\sqrt 3 \)

14 tháng 1 2017

a) Nếu ABC là một tam giác cân thì ABC là tam giác đều

Đây là mệnh đề sai

b) Nếu ABC là một tam giác cân và có một góc bằng 60o thì ABC là một tam giác đều

Đây là mệnh đề đúng